265 research outputs found
The utility of surface magnetic field measurements in the MAGSAT program
To take full advantage of the global, vector, survey by the Magsat satellite, and international program of augmented surface measurements was proposed. For secular variation and upper mantle conductivity the proposed measurements are global. The repeat station measurements for secular variation should be occupied at 2-3 year intervals. A special observing period in November and December of 1979 is proposed during which simultaneous, continuous, global measurements for upper mantle conductivity studies are to be gathered. Finally, it is recommended that the networks in operation during the IMS extend their operation through the Fall of 1980 to provide correlative data useful for high latitude disturbance studies and for crustal conductivity studies
Magsat: A satellite for measuring near earth magnetic fields
Magsat, designed for making measurements of the geomagnetic vector field, is evaluated. For accurate vector measurements the attitude of the fluxgate magnetometer will be determined to about 15 arc-seconds. Expected measurement accuracy will be 6 (gamma) in each component and 3 in magnitude. The Magsat data will be applied to solid earth studies including modeling of the Earth's main magnetic field, delineation of regional magnetic anomalies of crustal origin, and interpretation of those anomalies in terms of geologic and geophysical models. An opportunity will be presented to the scientific community to participate in data use investigations
Initial geomagnetic field model from MAGSAT
Magsat data from magnetically quiet days were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(3/80). The model utilized both scalar and vector data and fit that data with standard deviations of 8, 52, 55 and 97 nT for the scalar magnitude, B sub r, B sub theta and B sub phi respectively. When compared with earlier models, the Earth's dipole moment continues to decrease at a rate of about 26 nT/year. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the AWC/75 and IGS/75 are better for predicting vector fields
A Geophysical Atlas for Interpretation of Satellite-derived Data
A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included
Water Chemisorption and Reconstruction of the MgO Surface
The observed reactivity of MgO with water is in apparent conflict with
theoretical calculations which show that molecular dissociation does not occur
on a perfect (001) surface. We have performed ab-initio total energy
calculations which show that a chemisorption reaction involving a
reconstruction to form a (111) hydroxyl surface is strongly preferred with
Delta E = -90.2kJ/mol. We conclude that protonation stabilizes the otherwise
unstable (111) surface and that this, not the bare (001), is the most stable
surface of MgO under ambient conditions.Comment: RevTeX, 4 pages, 1 Encapsulated Postscript Figur
The nature of the highest energy cosmic rays
Ultra high energy gamma rays produce electron--positron pairs in interactions
on the geomagnetic field. The pair electrons suffer magnetic bremsstrahlung and
the energy of the primary gamma ray is shared by a bunch of lower energy
secondaries. These processes reflect the structure of the geomagnetic field and
cause experimentally observable effects. The study of these effects with future
giant air shower arrays can identify the nature of the highest energy cosmic
rays as either gamma-rays or nuclei.Comment: 15 pages of RevTeX plus 6 postscript figures, tarred, gzipped and
uuencoded. Subm. to Physical Review
Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field
Solar wind generated magnetic disturbances are currently one of the major obstacles for improving the accuracy in the determination of the magnetic field due to sources internal to the Earth. In the present study a global MHD model of solar wind magnetosphere interaction is used to obtain a physically consistent, divergence-free model of ionospheric, field-aligned and magnetospheric currents in a realistic magnetospheric geometry. The magnetic field near the Earth due to these currents is analyzed by estimating and comparing the contributions from the various parts of the system, with the aim of identifying the most important aspects of the solar wind disturbances in an internal field modeling context. The contribution from the distant magnetospheric currents is found to consist of two, mainly opposing, contributions from respectively the dayside magnetopause currents and the cross-tail current. At high latitudes the field-aligned component is of partidular interest in connection with internal field-modelling. In the attitude regime of 400-800 km (typical for low Earth orbit satellites) the ionospheric currents are found to contribute significantly to the disturbancance, and account for more than 90% of the field-aligned disturbance. The magnetic disturbance field from field-aligned currents (FACs) is basically transverse to the main field, and they therefore contribute with less than 2% to the disturbance in total field intensity. Inhomogeneity in ionospheric conductance is identified as the main cause of main-field disturbance in the field-aligned direction. These disturbances are associated with the ionospheric Pedersen currents, and may introduce systematic errors in internal field models
- …