839 research outputs found

    Quasi one-dimensional flames

    Get PDF

    Modeling of two-dimensional laminar flames

    Get PDF

    Flame cooling by a burner wall

    Get PDF
    A model is proposed to describe the structure of the cooling boundary layer between a cold burner wall and a flame near flash-back. Two-dimensional combustion equations are solved using a one-step chemical reaction model. The analytical solutions prove to be in good agreement with the results of a numerical study. Furthermore, the thickness of the cooling layer is estimated and appears to be in fair agreement with available experimental data. The understanding of the mass and heat transport processes in a flame near a cold burner wall is indispensable for the understanding of the flame stabilization process

    Midrapidity phi production in Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    We present the first measurement of midrapidity vector meson phi production in Au+Au collisions at RHIC (sqrt[sNN]=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio N phi /Nh- is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio N phi /Nh- and T for the phi meson at midrapidity do not change for the selected multiplicity bins.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Rotating stall in a two-dimensional vaneless diffuser flow

    Get PDF
    This paper reports a numerical investigation aimed at understanding the rotating stall mechanism in radial vaneless diffuser. The study of vaneless diffuser flow instability is restricted to a two-dimensional flow analysis, where the influence of wall boundary layers is neglected. A commercial code with the standard laminar viscous flow solver is applied to model the incompressible vaneless diffuser flow in the plane parallel to the diffuser walls. At diffuser inlet rotating jet-wake velocity profile is prescribed and at diffuser outlet constant pressure. Current study reveals that a two-dimensional rotating instability in the vaneless radial diffuser occurs when the critical flow angle is reached. The diffuser flow stability limit is determined for different diffuser radius ratios, which reveals that the core flow stability in the vaneless radial diffuser improves as the diffuser radius ratio decreases

    Jet in crossflow: Experiments on the interaction of flow-structure and cooling efficiency

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.The effect of imperfections in film-cooling nozzles on the flow fields and cooling effectiveness is studied. Measurements are performed using laser induced fluoresce, particle image velocimetry and thermo-chromic liquid crystal sheets. Different positions, shapes (square, triangular and round) and sizes (5- 25% blockage) of imperfections are used to investigate the role of the nozzle geometry at different velocity ratios (0.15-1.50) with a fixed nozzle angle (37o). Results will show that the position and size of the geometry disturbance are determining factors in the resulting cooling effectiveness, through their effect on the vortex-structures at the nozzle outlet. In some cases, the imperfect holes lead to a significantly improved performance, while in some other cases they deteriorate it.dc201

    d-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions

    Get PDF
    The first measurements of light antinucleus production in Au+Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d-bar and 3He-bar are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the 3He-bar freeze-out volume is smaller than the d-bar freeze-out volume.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Measurement of inclusive antiprotons from Au+Au collisions at sqrt[sNN] = 130 GeVd-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions

    Get PDF
    We report the first measurement of inclusive antiproton production at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25<pperp<0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied31, J. Berger11, H. Bichsel30, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez33, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro31, D. Cebra5, S. Chattopadhyay31, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian33, B. Choi28, W. Christie2, J. P. Coffin13, T. M. Cormier31, J. G. Cramer30, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop33, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, K. Filimonov15, E. Finch33, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, C. A. Gagliardi27, N. Gagunashvili9, J. Gans33, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski29, O. Grachov31, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris33, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann28, M. Horsley33, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara28, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik29, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel29, J. Klay15, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde33, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell28, B. Lasiuk33, F. Laue2, A. Lebedev2, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li31, S. J. Lindenbaum19, M. A. Lisa20, F. Liu32, L. Liu32, Z. Liu32, Q. J. Liu30, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka33, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller33, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, C. F. Moore28, V. Morozov15, M. M. de Moura31, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey31, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov31, T. Pawlak29, V. Perevoztchikov2, W. Peryt29, V. A. Petrov10, E. Platner24, J. Pluta29, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle30, C. Pruneau31, S. Radomski29, G. Rai15, O. Ravel26, R. L. Ray28, S. V. Razin9,12, D. Reichhold8, J. G. Reid30, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, V. Rykov31, I. Sakrejda15, J. Sandweiss33, A. C. Saulys2, I. Savin10, J. Schambach28, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov33, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky31, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide31, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas29, J. Takahashi25, A. H. Tang14, J. H. Thomas15, M. Thompson3, V. Tikhomirov18, T. A. Trainor30, S. Trentalange6, R. E. Tribble27, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin31, F. Wang23, H. Ward28, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu2, A. E. Yakutin22, E. Yamamoto15, J. Yang6, P. Yepes24, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang33, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Identified particle elliptic flow in Au+Au collisions at sqrt[sNN] = 130 GeV

    Get PDF
    We report first results on elliptic flow of identified particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, R. Bossingham15, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, L. Conin26, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, P. Leszczynski28, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, A. Maliszewski28, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, W. Pinganaud26, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, K. Schweda15, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, H. Stroebele11, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
    corecore