39,515 research outputs found
Magnetooptical sum rules close to the Mott transition
We derive new sum rules for the real and imaginary parts of the
frequency-dependent Hall constant and Hall conductivity. As an example, we
discuss their relevance to the doped Mott insulator that we describe within the
dynamical mean-field theory of strongly correlated electron systems.Comment: 4 pages, 4 ps figures; accepted for publication in PR
Emissivity measurements of reflective surfaces at near-millimeter wavelengths
We have developed an instrument for directly measuring the emissivity of reflective surfaces at near-millimeter wavelengths. The thermal emission of a test sample is compared with that of a reference surface, allowing the emissivity of the sample to be determined without heating. The emissivity of the reference surface is determined by one’s heating the reference surface and measuring the increase in emission. The instrument has an absolute accuracy of Δe = 5 x 10^-4 and can reproducibly measure a difference in emissivity as small as Δe = 10^-4 between flat reflective samples. We have used the instrument to measure the emissivity of metal films evaporated on glass and carbon fiber-reinforced plastic composite surfaces. We measure an emissivity of (2.15 ± 0.4) x 10^-3 for gold evaporated on glass and (2.65 ± 0.5) x 10^-3 for aluminum evaporated on carbon fiber-reinforced plastic composite
Planck pre-launch status: HFI ground calibration
Context. The Planck satellite was successfully launched on May 14th 2009. We have completed the pre-launch calibration measurements of the High Frequency Instrument (HFI) on board Planck and their processing.
Aims. We present the results of the pre-launch calibration of HFI in which we have multiple objectives. First, we determine instrumental parameters that cannot be measured in-flight and predict parameters that can. Second, we take the opportunity to operate and understand the instrument under a wide range of anticipated operating conditions. Finally, we estimate the performance of the instrument built.
Methods. We obtained our pre-launch calibration results by characterising the component and subsystems, then by calibrating the focal plane at IAS (Orsay) in the Saturne simulator, and later from the tests at the satellite level carried out in the CSL (Liège) cryogenic vacuum chamber. We developed models to estimate the instrument pre-launch parameters when no measurement could be performed.
Results. We reliably measure the Planck-HFI instrument characteristics and behaviour, and determine the flight nominal setting of all parameters. The expected in-flight performance exceeds the requirements and is close or superior to the goal specifications
Composite infrared bolometers with Si_3N_4 micromesh absorbers
We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G
Measuring Planck beams with planets
Aims. Accurate measurement of the cosmic microwave background (CMB) anisotropy requires precise knowledge of the instrument beam. We explore how well the Planck beams will be determined from observations of planets, developing techniques that are also appropriate for other experiments.
Methods. We simulate planet observations with a Planck-like scanning strategy, telescope beams, noise, and detector properties. Then we employ both parametric and non-parametric techniques, reconstructing beams directly from the time-ordered data. With a faithful parameterization of the beam shape, we can constrain certain detector properties, such as the time constants of the detectors, to high precision. Alternatively, we decompose the beam using an orthogonal basis. For both techniques, we characterize the errors in the beam reconstruction with Monte Carlo realizations. For a simplified scanning strategy, we study the impact on estimation of the CMB power spectrum. Finally, we explore the consequences for measuring cosmological parameters, focusing on the spectral index of primordial scalar perturbations, n_s.
Results. The quality of the power spectrum measurement will be significantly influenced by the optical modeling of the telescope. In our most conservative case, using no information about the optics except the measurement of planets, we find that a single transit of Jupiter across the focal plane will measure the beam window functions to better than 0.3% for the channels at 100–217 GHz that are the most sensitive to the CMB. Constraining the beam with optical modeling can lead to much higher quality reconstruction.
Conclusions. Depending on the optical modeling, the beam errors may be a significant contribution to the measurement systematics for n_s
Markov Chain Beam Randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation
We introduce a new method to propagate uncertainties in the beam shapes used
to measure the cosmic microwave background to cosmological parameters
determined from those measurements. The method, which we call Markov Chain Beam
Randomization, MCBR, randomly samples from a set of templates or functions that
describe the beam uncertainties. The method is much faster than direct
numerical integration over systematic `nuisance' parameters, and is not
restricted to simple, idealized cases as is analytic marginalization. It does
not assume the data are normally distributed, and does not require Gaussian
priors on the specific systematic uncertainties. We show that MCBR properly
accounts for and provides the marginalized errors of the parameters. The method
can be generalized and used to propagate any systematic uncertainties for which
a set of templates is available. We apply the method to the Planck satellite,
and consider future experiments. Beam measurement errors should have a small
effect on cosmological parameters as long as the beam fitting is performed
after removal of 1/f noise.Comment: 17 pages, 23 figures, revised version with improved explanation of
the MCBR and overall wording. Accepted for publication in Astronomy and
Astrophysics (to appear in the Planck pre-launch special issue
- …
