2,765 research outputs found
Beyond Standard Model Higgs
Recent LHC highlights of searches for Higgs bosons beyond the Standard Model
are presented. The results by the ATLAS and CMS collaborations are based on
2011 and 2012 proton-proton collision data at centre-of-mass energies of 7 and
8 TeV, respectively. They test a wide range of theoretical models.Comment: Presented at the XXXIV Physics in Collision Symposium, Bloomington,
Indiana, September 16-20, 2014. 9 pages, 9 figure
High- multi-jet final states at ATLAS and CMS
The increase of the centre-of-mass energy of the Large Hadron Collider (LHC)
to 13 TeV has opened up a new energy regime. Final states including
high-momentum multi-jet signatures often dominate beyond standard model
phenomena, in particular decay products of new heavy particles. While the
potential di-photon resonance currently receives a lot of attention, multi-jet
final states pose strong constraints on what physics model an observation could
actually be described with. In this presentation, the latest results of the
ATLAS and CMS collaborations in high transverse momentum multi-jet final states
are summarised. This includes searches for heavy resonances and new phenomena
in the di-jet mass spectrum, di-jet angular distributions, and the sum of
transverse momenta in different event topologies. Furthermore, results on
leptoquark pair production will be shown. A particular focus is laid on the
different background estimation methods.Comment: 8 pages, Presented at Moriond/EW2016 51st Rencontres de Moriond on
Electroweak Interactions and Unified Theorie
Active suspension design for a Large Space Structure ground test facility
The expected future high performance requirements for Large Space Structures (LSS) enforce technology innovations such as active vibration damping techniques e.g., by means of structure sensors and actuators. The implementation of new technologies like that requires an interactive and integrated structural and control design with an increased effort in hardware validation by ground testing. During the technology development phase generic system tests will be most important covering verification and validation aspects up to the preparation and definition of relevant space experiments. For many applications using advanced designs it is deemed necessary to improve existing testing technology by further reducing disturbances and gravity coupling effects while maintaining high performance reliability. A key issue in this context is the improvement of suspension techniques. The ideal ground test facility satisfying these requirements completely will never be found. The highest degree of reliability will always be obtained by passive suspension methods taking into account severe performance limitations such as non-zero rigid body modes, restriction of degrees of freedom of motion and frequency response limitations. Passive compensation mechanisms, e.g., zero-spring-rate mechanisms, either require large moving masses or they are limited with respect to low-frequency performance by friction, stiction or other non-linear effects. With active suspensions these limitations can be removed to a large extent thereby increasing the range of applications. Despite an additional complexity which is associated with a potential risk in reliability their development is considered promising due to the amazing improvement of real-time control technology which is still continuing
Lorentz meets Lipschitz
We show that maximal causal curves for a Lipschitz continuous Lorentzian
metric admit a -parametrization and that they solve the
geodesic equation in the sense of Filippov in this parametrization. Our proof
shows that maximal causal curves are either everywhere lightlike or everywhere
timelike. Furthermore, the proof demonstrates that maximal causal curves for an
-H\"older continuous Lorentzian metric admit a
-parametrization.Comment: 25 pages; v2: minor improvements of the presentatio
Midrapidity phi production in Au+Au collisions at sqrt[sNN]=130 GeV
We present the first measurement of midrapidity vector meson phi production in Au+Au collisions at RHIC (sqrt[sNN]=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio N phi /Nh- is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio N phi /Nh- and T for the phi meson at midrapidity do not change for the selected multiplicity bins.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
Hyalocytes — guardians of the vitreoretinal interface
Originally discovered in the nineteenth century, hyalocytes are the resident macrophage cell population in the vitreous body. Despite this, a comprehensive understanding of their precise function and immunological significance has only recently emerged. In this article, we summarize recent in-depth investigations deciphering the critical role of hyalocytes in various aspects of vitreous physiology, such as the molecular biology and functions of hyalocytes during development, adult homeostasis, and disease. Hyalocytes are involved in fetal vitreous development, hyaloid vasculature regression, surveillance and metabolism of the vitreoretinal interface, synthesis and breakdown of vitreous components, and maintenance of vitreous transparency. While sharing certain resemblances with other myeloid cell populations such as retinal microglia, hyalocytes possess a distinct molecular signature and exhibit a gene expression profile tailored to the specific needs of their host tissue. In addition to inflammatory eye diseases such as uveitis, hyalocytes play important roles in conditions characterized by anomalous posterior vitreous detachment (PVD) and vitreoschisis. These can be hypercellular tractional vitreo-retinopathies, such as macular pucker, proliferative vitreo-retinopathy (PVR), and proliferative diabetic vitreo-retinopathy (PDVR), as well as paucicellular disorders such as vitreo-macular traction syndrome and macular holes. Notably, hyalocytes assume a significant role in the early pathophysiology of these disorders by promoting cell migration and proliferation, as well as subsequent membrane contraction, and vitreoretinal traction. Thus, early intervention targeting hyalocytes could potentially mitigate disease progression and prevent the development of proliferative vitreoretinal disorders altogether, by eliminating the involvement of vitreous and hyalocytes
d-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions
The first measurements of light antinucleus production in Au+Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d-bar and 3He-bar are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the 3He-bar freeze-out volume is smaller than the d-bar freeze-out volume.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
Measurement of inclusive antiprotons from Au+Au collisions at sqrt[sNN] = 130 GeVd-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions
We report the first measurement of inclusive antiproton production at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25<pperp<0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied31, J. Berger11, H. Bichsel30, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez33, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro31, D. Cebra5, S. Chattopadhyay31, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian33, B. Choi28, W. Christie2, J. P. Coffin13, T. M. Cormier31, J. G. Cramer30, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop33, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, K. Filimonov15, E. Finch33, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, C. A. Gagliardi27, N. Gagunashvili9, J. Gans33, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski29, O. Grachov31, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris33, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann28, M. Horsley33, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara28, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik29, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel29, J. Klay15, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde33, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell28, B. Lasiuk33, F. Laue2, A. Lebedev2, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li31, S. J. Lindenbaum19, M. A. Lisa20, F. Liu32, L. Liu32, Z. Liu32, Q. J. Liu30, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka33, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller33, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, C. F. Moore28, V. Morozov15, M. M. de Moura31, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey31, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov31, T. Pawlak29, V. Perevoztchikov2, W. Peryt29, V. A. Petrov10, E. Platner24, J. Pluta29, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle30, C. Pruneau31, S. Radomski29, G. Rai15, O. Ravel26, R. L. Ray28, S. V. Razin9,12, D. Reichhold8, J. G. Reid30, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, V. Rykov31, I. Sakrejda15, J. Sandweiss33, A. C. Saulys2, I. Savin10, J. Schambach28, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov33, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky31, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide31, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas29, J. Takahashi25, A. H. Tang14, J. H. Thomas15, M. Thompson3, V. Tikhomirov18, T. A. Trainor30, S. Trentalange6, R. E. Tribble27, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin31, F. Wang23, H. Ward28, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu2, A. E. Yakutin22, E. Yamamoto15, J. Yang6, P. Yepes24, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang33, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
Identified particle elliptic flow in Au+Au collisions at sqrt[sNN] = 130 GeV
We report first results on elliptic flow of identified particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, R. Bossingham15, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, L. Conin26, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, P. Leszczynski28, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, A. Maliszewski28, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, W. Pinganaud26, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, K. Schweda15, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, H. Stroebele11, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
Elliptic flow from two- and four-particle correlations in Au+Au collisions at sqrt[sNN]=130 GeV
Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (nonflow correlations). Using data for Au + Au collisions at sqrt[sNN]=130 GeV from the STAR time projection chamber, it is found that four-particle correlation analyses can reliably separate flow and nonflow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of 2. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied31, J. Berger11, H. Bichsel30, A. Billmeier31, L. C. Bland2, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, A. Bravar2, R. V. Cadman1, H. Caines33, M. Calderón de la Barca Sánchez2, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro31, D. Cebra5, P. Chaloupka20, S. Chattopadhyay31, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian33, B. Choi28, W. Christie2, J. P. Coffin13, T. M. Cormier31, J. G. Cramer30, H. J. Crawford4, W. S. Deng2, A. A. Derevschikov22, L. Didenko2, T. Dietel11, J. E. Draper5, V. B. Dunin9, J. C. Dunlop33, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini2, V. Faine2, K. Filimonov15, E. Finch33, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15,32, C. A. Gagliardi27, N. Gagunashvili9, J. Gans33, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, O. Grachov31, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris33, T. W. Henry27, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann28, M. Horsley33, H. Z. Huang6, T. J. Humanic20, G. Igo6, A. Ishihara28, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik29, I. Johnson15, P. G. Jones3, E. G. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, J. Kiryluk6, A. Kisiel29, J. Klay15, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, M. Kopytine14, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde33, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell28, B. Lasiuk33, F. Laue2, A. Lebedev2, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li31, S. J. Lindenbaum19, M. A. Lisa20, F. Liu32, L. Liu32, Z. Liu32, Q. J. Liu30, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, T. Ludlam2, D. Lynn2, J. Ma6, R. Majka33, S. Margetis14, C. Markert33, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller33, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, C. F. Moore28, V. Morozov15, M. M. de Moura31, M. G. Munhoz25, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey31, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov31, T. Pawlak29, V. Perevoztchikov2, W. Peryt29, V. A. Petrov10, M. Planinic12, J. Pluta29, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle30, C. Pruneau31, J. Putschke16, G. Rai15, G. Rakness12, O. Ravel26, R. L. Ray28, S. V. Razin9,12, D. Reichhold8, J. G. Reid30, G. Renault26, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, A. Rose31, C. Roy26, V. Rykov31, I. Sakrejda15, S. Salur33, J. Sandweiss33, A. C. Saulys2, I. Savin10, J. Schambach28, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov33, R. Snellings15, P. Sorensen6, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky31, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide31, E. Sugarbaker20, C. Suire2, M. Sumbera20, B. Surrow2, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas29, A. Tai6, J. Takahashi25, A. H. Tang14, J. H. Thomas15, M. Thompson3, V. Tikhomirov18, M. Tokarev9, M. B. Tonjes17, T. A. Trainor30, S. Trentalange6, R. E. Tribble27, V. Trofimov18, O. Tsai6, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin31, F. Wang23, H. Ward28, J. W. Watson14, R. Wells20, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt33, J. Wood6, N. Xu15, Z. Xu2, A. E. Yakutin22, E. Yamamoto15, J. Yang6, P. Yepes24, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang33, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
- …