4,943 research outputs found
Optimal decision making for sperm chemotaxis in the presence of noise
For navigation, microscopic agents such as biological cells rely on noisy
sensory input. In cells performing chemotaxis, such noise arises from the
stochastic binding of signaling molecules at low concentrations. Using
chemotaxis of sperm cells as application example, we address the classic
problem of chemotaxis towards a single target. We reveal a fundamental
relationship between the speed of chemotactic steering and the strength of
directional fluctuations that result from the amplification of noise in the
chemical input signal. This relation implies a trade-off between slow, but
reliable, and fast, but less reliable, steering.
By formulating the problem of optimal navigation in the presence of noise as
a Markov decision process, we show that dynamic switching between reliable and
fast steering substantially increases the probability to find a target, such as
the egg. Intriguingly, this decision making would provide no benefit in the
absence of noise. Instead, decision making is most beneficial, if chemical
signals are above detection threshold, yet signal-to-noise ratios of gradient
measurements are low. This situation generically arises at intermediate
distances from a target, where signaling molecules emitted by the target are
diluted, thus defining a `noise zone' that cells have to cross.
Our work addresses the intermediate case between well-studied perfect
chemotaxis at high signal-to-noise ratios close to a target, and random search
strategies in the absence of navigation cues, e.g. far away from a target. Our
specific results provide a rational for the surprising observation of decision
making in recent experiments on sea urchin sperm chemotaxis. The general theory
demonstrates how decision making enables chemotactic agents to cope with high
levels of noise in gradient measurements by dynamically adjusting the
persistence length of a biased persistent random walk.Comment: 9 pages, 5 figure
Pre-schoolers who stutter score lower in verbal skills than their non-stuttering peers
Purpose: The study aimed at the examination of a link between stuttering and verbal skills (speech comprehension, articulation, grammar, vocabulary, and phonological short-term memory) in three- to five-year-old children.Method: Two samples with a total of 7,217 unselected German children were tested with the validated speech and language test Marburger Sprachscreening – revised version (MSSrev).  Linguistic domains were compared for pre-school children who stuttered (CWS; n=110) and those who did not (CWNS; n=7,107) by means of Mann-Whitney U tests, general linear models, Spearman correlations, and cross-tables.  Results: In both samples, CWS scored lower in grammar, articulation, and overall performance on the MSSrev. Statistically significant associations between stuttering and (a) sex of the child, and (b) language disorders in the family were identified.Conclusions: Taking into account the effect sizes, there appears to be a weak, but statistically significant link between stuttering and verbal skills.
Recommended from our members
Editorial : Sea Ice: Bridging Spatial-Temporal Scales and Disciplines
Non peer reviewe
Sediment provenance in the Baker-MartĂnez fjord system (Chile, 48°s) indicated by magnetic susceptibility and inorganic geochemistry
Fjord sediments are increasingly used as high-resolution archives of climate and environmental change, including variations in glacier mass balance and terrestrial hydrology. To accurately interpret such sediment records, it is crucial to comprehend sediment transport processes and determine sediment provenance. With this in mind, our main objective is to identify cost-effective parameters that can be used to reconstruct relative variations in the origin of sediments deposited in the Baker-MartĂnez fjord system, which is located between the Northern (NPI) and Southern (SPI) Patagonian Icefields. We focus on estimating the proportions of sediment derived from each icefield, taking advantage of the clearly distinct lithologies that underlie NPI (Patagonian Batholith) and SPI (Eastern Andean Metamorphic Complex) glaciers. The magnetic susceptibility and inorganic geochemistry of 21 surface sediment samples collected along the fjord system and that of suspended sediment samples from the four main rivers that discharge at its heads were investigated. Results indicate that sediments derived from the NPI are characterized by higher magnetic susceptibility and log(Ti/Al) values than those from the SPI, reflecting the mafic nature of the batholith. In fjords that receive contributions from both the NPI and SPI, magnetic susceptibility and log(Ti/Al) primarily reflect sediment provenance. In fjords receiving sediment from only one icefield, however, these parameters are positively correlated with grain size and reflect the progressive settling of particles from the surficial plume. Our results suggest that magnetic susceptibility and log(Ti/Al) can be used to reconstruct sediment provenance within the Baker-MartĂnez fjord system, but that only log(Ti/Al) can provide quantitative estimates of the proportions of sediment derived from each icefield. Ultimately, applying these provenance indicators to long sediment cores from the Baker-MartĂnez fjord system could allow reconstructing relative variations in sediment input from each icefield, which may in turn be interpreted as changes in river discharge and/or glacier mass balance
Using Canonical Correlation Analysis to Discover Genetic Regulatory Variants
Background: Discovering genetic associations between genetic markers and gene expression levels can provide insight into gene regulation and, potentially, mechanisms of disease. Such analyses typically involve a linkage or association analysis in which expression data are used as phenotypes. This approach leads to a large number of multiple comparisons and may therefore lack power. We assess the potential of applying canonical correlation analysis to partitioned genomewide data as a method for discovering regulatory variants. Methodology/Principal Findings: Simulations suggest that canonical correlation analysis has higher power than standard pairwise univariate regression to detect single nucleotide polymorphisms when the expression trait has low heritability. The increase in power is even greater under the recessive model. We demonstrate this approach using the Childhood Asthma Management Program data. Conclusions/Significance: Our approach reduces multiple comparisons and may provide insight into the complex relationships between genotype and gene expression
Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys
Sea-ice ridges constitute a large fraction of the total Arctic sea-ice area (up to 40 %–50 %); nevertheless, they are the least studied part of the ice pack. Here we investigate sea-ice melt rates using rare, repeated underwater multibeam sonar surveys that cover a period of 1 month during the advanced stage of sea-ice melt. Bottom melt increases with ice draft for first- and second-year level ice and a first-year ice ridge, with an average of 0.46, 0.55, and 0.95 m of total snow and ice melt in the observation period, respectively. On average, the studied ridge had a 4.6 m keel bottom draft, was 42 m wide, and had 4 % macroporosity. While bottom melt rates of ridge keel were 3.8 times higher than first-year level ice, surface melt rates were almost identical but responsible for 40 % of ridge draft decrease. Average cross-sectional keel melt ranged from 0.2 to 2.6 m, with a maximum point ice loss of 6 m, showcasing its large spatial variability. We attribute 57 % of the ridge total (surface and bottom) melt variability to keel draft (36 %), slope (32 %), and width (27 %), with higher melt for ridges with a larger draft, a steeper slope, and a smaller width. The melt rate of the ridge keel flanks was proportional to the draft, with increased keel melt within 10 m of its bottom corners and the melt rates between these corners comparable to the melt rates of level ice.</p
Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba
Antarctic krill Euphausia superba (“krill”) constitute a fundamental food source for Antarctic seabirds and mammals, and a globally important fisheries resource. The future resilience of krill to climate change depends critically on the winter survival of young krill. To survive periods of extremely low production by pelagic algae during winter, krill are assumed to rely partly on carbon produced by ice algae. The true dependency on ice algae-produced carbon, however, is so far unquantified. This confounds predictions on the future resilience of krill stocks to sea ice decline. Fatty acid (FA) analysis, bulk stable isotope analysis (BSIA), and compound-specific stable isotope analysis (CSIA) of diatom- and dinoflagellate-associated marker FAs were applied to quantify the dependency of overwintering larval, juvenile, and adult krill on ice algae-produced carbon (αIce) during winter 2013 in the Weddell-Scotia Confluence Zone. Our results demonstrate that the majority of the carbon uptake of the overwintering larval and juvenile krill originated from ice algae (up to 88% of the carbon budget), and that the dependency on ice algal carbon decreased with ontogeny, reaching <56% of the carbon budget in adults. Spatio-temporal variability in the utilization of ice algal carbon was more pronounced in larvae and juvenile krill than in adults. Differences between αIce estimates derived from short- vs. long-term FA-specific isotopic compositions suggested that ice algae-produced carbon gained importance as the winter progressed, and might become critical at the late winter-spring transition, before the phytoplankton bloom commences. Where the sea ice season shortens, reduced availability of ice algae might possibly not be compensated by surplus phytoplankton production during wintertime. Hence, sea ice decline could seriously endanger the winter survival of recruits, and subsequently overall biomass of krill
Sea-ice habitat minimizes grazing impact and predation risk for larval Antarctic krill
Survival of larval Antarctic krill (Euphausia superba) during winter is largely dependent upon the presence of sea ice as it provides an important source of food and shelter. We hypothesized that sea ice provides additional benefits because it hosts fewer competitors and provides reduced predation risk for krill larvae than the water column. To test our hypothesis, zooplankton were sampled in the Weddell-Scotia Confluence Zone at the ice-water interface (0–2 m) and in the water column (0–500 m) during August–October 2013. Grazing by mesozooplankton, expressed as a percentage of the phytoplankton standing stock, was higher in the water column (1.97 ± 1.84%) than at the ice-water interface (0.08 ± 0.09%), due to a high abundance of pelagic copepods. Predation risk by carnivorous macrozooplankton, expressed as a percentage of the mesozooplankton standing stock, was significantly lower at the ice-water interface (0.83 ± 0.57%; main predators amphipods, siphonophores and ctenophores) than in the water column (4.72 ± 5.85%; main predators chaetognaths and medusae). These results emphasize the important role of sea ice as a suitable winter habitat for larval krill with fewer competitors and lower predation risk. These benefits should be taken into account when considering the response of Antarctic krill to projected declines in sea ice. Whether reduced sea-ice algal production may be compensated for by increased water column production remains unclear, but the shelter provided by sea ice would be significantly reduced or disappear, thus increasing the predation risk on krill larvae
Interdisciplinary observations of the under-ice environment using a remotely operated vehicle
Improving our understanding of the climate and ecosystem of the sea-ice covered Arctic Ocean was a key objective during MOSAiC. We aimed for a better understanding of the linkages of physical and biological processes at the interface between sea ice and ocean. To enhance the quantification of these linkages, year-round observations of physical, biological, and chemical parameters are needed. We operated a remotely operated vehicle (ROV) equipped with an interdisciplinary sensor platform to simultaneously measure these parameters underneath the drifting sea ice. These observations were made synchronous in time and place enabling a description of their spatial and temporal variability. Overall, we completed more than 80 surveys covering all seasons and various sea ice and surface conditions. We focused on optical parameters, sea-ice bottom topography, and upper ocean physical and biological oceanography. In addition, visual documentation of the under-ice environment was performed, nets for zooplankton were towed, and the ROV was used for instrument deployment and maintenance. Here, we present all ROV sensor data, allowing for a comprehensive picture of the under-ice environment. We are inviting discussions on further collaboration in data analyses and usage, in particular co-location and merging with other datasets from MOSAiC and other (also future) projects
- …