3,038 research outputs found
Space-Borne Infrared Astronomy
The objective of this grant is to develop the Far IR Photometer (FIRP), one of four focal plane instruments on the IR Telescope in Space (IRTS). The IRTS was successfully launched in March 18, 1995 aboard the Japanese SFU platform. It surveyed the IR sky for approximately 40 days, and was eventually retrieved by NASA's STS. The FIRP succeeded in surveying approximately 5% of the sky in four bands centered at 150, 250, 400 and 700 microns. Several new technologies were developed using the funds from this grant, including: (1) a high performance gas-gap heat-switch, (2) a He-3 sorption refrigerator that is, to date, the only refrigerator to achieve sub-Kelvin temperatures in orbit, (3) high-sensitivity bolometric detectors with NEP less than 10-16 W(Hz(exp l/2)exp 1/2) when operated from a 300 mK heat sink, (4) readout electronics capable of providing DC stability for the bolometric detectors. Excess noise of unknown origin significantly reduced the sensitivity of the FIRP on orbit. Nevertheless, scientifically significant observations of the spectrum and temperature of the interstellar dust were made, and have been reported
SAMBA: Superconducting antenna-coupled, multi-frequency, bolometric array
We present a design for a multipixel, multiband (100 GHz, 200 GHz and 400 GHz) submillimeter instrument: SAMBA (Superconducting Antenna-coupled, Multi-frequency, Bolometric Array). SAMBA uses slot antenna coupled bolometers and microstrip filters. The concept allows for a much more compact, multiband imager compared to a comparable feedhorn-coupled bolometric system. SAMBA incorporates an array of slot antennas, superconducting transmission lines, a wide band multiplexer and superconducting transition edge bolometers. The transition-edge film measures the millimeter-wave power deposited in the resistor that terminates the transmission line
Numerical optimization of integrating cavities for diffraction-limited millimeter-wave bolometer arrays
Far-infrared to millimeter-wave bolometers designed to make astronomical observations are typically encased in integrating cavities at the termination of feedhorns or Winston cones. This photometer combination maximizes absorption of radiation, enables the absorber area to be minimized, and controls the directivity of absorption, thereby reducing susceptibility to stray light. In the next decade, arrays of hundreds of silicon nitride micromesh bolometers with planar architectures will be used in ground-based, suborbital, and orbital platforms for astronomy. The optimization of integrating cavity designs is required for achieving the highest possible sensitivity for these arrays. We report numerical simulations of the electromagnetic fields in integrating cavities with an infinite plane-parallel geometry formed by a solid reflecting backshort and the back surface of a feedhorn array block. Performance of this architecture for the bolometer array camera (Bolocam) for cosmology at a frequency of 214 GHz is investigated. We explore the sensitivity of absorption efficiency to absorber impedance and backshort location and the magnitude of leakage from cavities. The simulations are compared with experimental data from a room-temperature scale model and with the performance of Bolocam at a temperature of 300 mK. The main results of the simulations for Bolocam-type cavities are that (1) monochromatic absorptions as high as 95% are achievable with <1% cross talk between neighboring cavities, (2) the optimum absorber impedances are 400 Ω/sq, but with a broad maximum from ~150 to ~700 Ω/sq, and (3) maximum absorption is achieved with absorber diameters ≥1.5λ. Good general agreement between the simulations and the experiments was found
Integrated Focal Plane Arrays for Millimeter-wave Astronomy
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than
standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1 - 0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications
Initial test results on bolometers for the Planck high frequency instrument
We summarize the fabrication, flight qualification, and dark performance of bolometers completed at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2009. The HFI is a multicolor focal plane which consists of 52 bolometers operated at 100 mK. Each bolometer is mounted to a feedhorn-filter assembly which defines one of six frequency bands centered between 100-857 GHz. Four detectors in each of five bands from 143-857 GHz are coupled to both linear polarizations and thus measure the total intensity. In addition, eight detectors in each of four bands (100, 143, 217, and 353 GHz) couple only to a single linear polarization and thus provide measurements of the Stokes parameters, Q and U, as well as the total intensity. The measured noise equivalent power (NEP) of all detectors is at or below the background limit for the telescope and time constants are a few ms, short enough to resolve point sources as the 5 to 9 arc min beams move across the sky at 1 rpm
Collection of Athermal Phonons into Doped Germanium Thermistors Using Quasiparticle Trapping
We have developed a low‐temperature particle detector that uses a novel quasiparticle trapping mechanism to funnel athermal phonon energy from an 80 mg Ge absorber into a 1.6 mg doped Ge thermistor via a superconducting Al film. We report on pulse height spectra obtained at 320 mK by scanning a 241Am alpha source along the device, and show that up to 20% of the energy deposited in the Ge absorber by a 5.5 MeV alpha particle interaction can be collected into a thermistor via quasiparticle trapping. We show that this device is sensitive to the position of an alpha particle interaction in the Ge absorber for interaction distances of up to 5 mm from a quasiparticle trap
Design of broadband filters and antennas for SAMBA
We present a design for multipixel, multiband submillimeter instrument: SAMBA (Superconducting Antenna-coupled, Multi-frequency, Bolometric Array). SAMBA uses antenna coupled bolometers and microstrip filters. The concept allows for a much more compact, multiband imager compared to a comparable feedhorn-coupled bolometric system. SAMBA incorporates an array of slot antennas, superconducting transmission lines, a wide band multiplexer and superconducting transition edge bolometers. The transition-edge film measures the millimeter-wave power deposited in the resistor that terminates the transmission line
Predicting the response of a submillimeter bolometer to cosmic rays
Bolometers designed to detect. submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model
A Search for Near-Infrared Emission From the Halo of NGC 5907 at Radii of 10 kpc to 30 kpc
We present a search for near-infrared (3.5-5 micron) emission from baryonic
dark matter in the form of low-mass stars and/or brown dwarfs in the halo of
the nearby edge-on spiral galaxy NGC 5907. The observations were made using a
256 by 256 InSb array with a pixel scale of 17" at the focus of a
liquid-helium-cooled telescope carried above the Earth's atmosphere by a
sounding rocket. In contrast to previous experiments which have detected a halo
around NGC 5907 in the V, R, I, J and K bands at galactic radii 6kpc < r <
10kpc, our search finds no evidence for emission from a halo at 10kpc < r <
30kpc. Assuming a halo mass density scaling as r^(-2), which is consistent with
the flat rotation curves that are observed out to radii of 32kpc, the lower
limit of the mass-to-light ratio at 3.5-5 microns for the halo of NGC 5907 is
250 (2 sigma) in solar units. This is comparable to the lower limit we have
found previously for NGC 4565 (Uemizu et al. 1998). Based on recent models, our
non-detection implies that hydrogen- burning stars contribute < 15% of the mass
of the dark halo of NGC 5907. Our results are consistent with the previous
detection of extended emission at r < 10kpc if the latter is caused by a
stellar population that has been ejected from the disk because of tidal
interactions. We conclude that the dark halo of NGC 5907, which is evident from
rotation curves that extend far beyond 10kpc, is not comprised of hydrogen
burning stars.Comment: 12 pages, LateX, plus 6 ps figures. Accepted by ApJ. minor changes,
added references, corrected typo
- …