1,588 research outputs found

    Black mantle tissue of endolithic mussels (<i>Leiosolenus </i>spp.) is cloaking borehole orifices in Caribbean reef borals

    Get PDF
    Bioerosion caused by boring mussels (Mytilidae: Lithophaginae) can negatively impact coral reef health. During biodiversity surveys of coral-associated fauna in Curaçao (southern Caribbean), morphological variation in mussel boreholes was studied. Borings were found in 22 coral species, 12 of which represented new host records. Dead corals usually showed twin siphon openings, for each mussel shaped like a figure of eight, which were lined with a calcareous sheath and protruded as tubes from the substrate surface. Most openings surrounded by live coral tissue were deeper and funnel-shaped, with outlines resembling dumbbells, keyholes, ovals or irregular ink blotches. The boreholes appeared to contain black siphon and mantle tissue of the mussel. Because of the black color and the hidden borehole opening in live host corals, the mantle tissue appeared to mimic dark, empty holes, while they were actually cloaking live coral tissue around the hole, which is a new discovery. By illustrating the morphological range of borehole orifices, we aim to facilitate the easy detection of boring mussels for future research

    Black Mantle Tissue of Endolithic Mussels (Leiosolenus spp.) Is Cloaking Borehole Orifices in Caribbean Reef Corals

    Get PDF
    Bioerosion caused by boring mussels (Mytilidae: Lithophaginae) can negatively impact coral reef health. During biodiversity surveys of coral-associated fauna in Curaçao (southern Caribbean), morphological variation in mussel boreholes was studied. Borings were found in 22 coral species, 12 of which represented new host records. Dead corals usually showed twin siphon openings, for each mussel shaped like a figure of eight, which were lined with a calcareous sheath and protruded as tubes from the substrate surface. Most openings surrounded by live coral tissue were deeper and funnel-shaped, with outlines resembling dumbbells, keyholes, ovals or irregular ink blotches. The boreholes appeared to contain black siphon and mantle tissue of the mussel. Because of the black color and the hidden borehole opening in live host corals, the mantle tissue appeared to mimic dark, empty holes, while they were actually cloaking live coral tissue around the hole, which is a new discovery. By illustrating the morphological range of borehole orifices, we aim to facilitate the easy detection of boring mussels for future research

    Host range of the coral-associated worm snail <i>Petaloconchus</i> sp. (Gastropoda: Vermetidae), a newly discovered cryptogenic pest species in the southern Caribbean

    Get PDF
    The presence of associated endofauna can have an impact on the health of corals. During fieldwork on the southern Caribbean island of Curaçao in 2021, the presence of an unknown coral-dwelling worm snail was discovered, which appeared to cause damage to its hosts. A study of photo archives revealed that the species was already present during earlier surveys at Curaçao since 2014 and also in the southern Caribbean island of Bonaire in 2019. It was not found in St. Eustatius, an island in the eastern Caribbean, during an expedition in 2015. The vermetid snail was preliminarily identified as Petaloconchus sp. Its habitat choice resembles that of P. keenae, a West Pacific coral symbiont. The Caribbean species was observed in 21 host coral species, more than reported for any other vermetid. Because Petaloconchus sp. is a habitat generalist, it is possible that it was introduced from an area with another host-coral fauna. The unknown vermetid is considered to be cryptogenic until future studies reveal its actual identity and its native range

    Morphological modifications and injuries of corals caused by symbiotic feather duster worms (Sabellidae) in the Caribbean

    Get PDF
    Some coral-associated invertebrates are known for the negative impact they have on the health of their hosts. During biodiversity surveys on the coral reefs of Curaçao and a study of photo archives of Curaçao, Bonaire, and St. Eustatius, the Caribbean split-crown feather duster worm Anamobaea sp. (Sabellidae) was discovered as an associate of 27 stony coral species (Scleractinia spp. and Millepora spp.). The worm was also found in association with an encrusting octocoral (Erythropodium caribaeorum), a colonial tunicate (Trididemnum solidum), various sponge species, and thallose algae (mainly Lobophora sp.), each hypothesized to be secondary hosts. The worms were also common on dead coral. Sabellids of the genera Bispira and Sabellastarte were all found on dead coral. Some of them appeared to have settled next to live corals or on patches of dead coral skeleton surrounded by living coral tissue, forming pseudo-associations. Associated Anamobaea worms can cause distinct injuries in most host coral species and morphological deformities in a few of them. Since Anamobaea worms can form high densities, they have the potential to become a pest species on Caribbean coral reefs when environmental conditions become more favorable for them

    Effect of amoxicillin on the gut microbiome of children with severe acute malnutrition in Madarounfa, Niger: A retrospective metagenomic analysis of a placebo-controlled trial

    Get PDF
    BACKGROUND: Children with severe acute malnutrition are treated with antibiotics as outpatients. We aimed to determine the effect of 7 days of amoxicillin on acute and long-term changes to the gut microbiome and antibiotic resistome in children treated for severe acute malnutrition. METHODS: We conducted a secondary analysis of a randomised, double-blinded, placebo-controlled trial (NCT01613547) of amoxicillin in children (aged 6-59 months) with severe acute malnutrition treated as outpatients in Madarounfa, Niger. We randomly selected 161 children from the overall cohort (n=2399) for initial 12-week follow-up from Sept 23, 2013 to Feb 3, 2014. We selected a convenience sample of those 161 children, on the basis of anthropometric measures, for follow-up 2 years later (Sept 28 to Oct 27, 2015). Children provided faecal samples at baseline, week 1, week 4, week 8, week 12, and, for those in the 2-year follow-up cohort, week 104. We conducted metagenomic sequencing followed by microbiome and resistome profiling of faecal samples. 38 children without severe acute malnutrition and six children with severe acute malnutrition matching the baseline ages of the original cohort were used as reference controls. FINDINGS: In the 12-week follow-up group, amoxicillin led to an immediate decrease in gut microbiome richness from 37·6 species (95% CI 32·6-42·7) and Shannon diversity index (SDI) 2·18 (95% CI 1·97-2·39) at baseline to 27·7 species (95% CI 22·9-32·6) species and SDI 1·55 (95% CI 1·35-1·75) at week 1. Amoxicillin increased gut antibiotic resistance gene abundance to 6044 reads per kilobase million (95% CI 4704-7384) at week 1, up from 4800 (3391-6208) at baseline, which returned to baseline 3 weeks later. 35 children were included in the 2-year follow-up; the amoxicillin-treated children (n=22) had increased number of species in the gut microbiome compared with placebo-treated children (n=13; 60·7 [95% CI 54·7-66·6] vs 36·9 [29·4-44·3]). Amoxicillin-treated children had increased Prevotella spp and decreased Bifidobacterium spp relative to age-matched placebo-treated children, indicating a more mature, adult-like microbiome. INTERPRETATION: Amoxicillin treatment led to acute but not sustained increases in antimicrobial resistance genes and improved gut microbiome maturation 2 years after severe acute malnutrition treatment. FUNDING: Bill & Melinda Gates Foundation; Médecins sans Frontières Operational Center Paris; National Institute of Allergy and Infectious Diseases; National Institute of General Medical Sciences; Eunice Kennedy Shriver National Institute of Child Health and Human Development; Edward Mallinckrodt Jr Foundation; Doris Duke Foundation

    Characterisation and properties of a small cell lung cancer cell line and xenograft WX322 with marked sensitivity to alpha-interferon.

    Get PDF
    Controversy exists as to whether interferons usefully influence the growth of epithelial carcinomas. A small cell lung carcinoma (SCLC) cell line, WX322, has been derived which is greater than 1000-fold more sensitive to alpha-interferon (IFN) when grown in agar than other reported SCLC cell lines. The WX322 line has been characterised to prove its epithelial origin and its chemosensitivity compared with that of the NCI-H69 small cell line. The WX322 cell line expresses neuroendocrine and epithelial markers and possesses a morphology consistent with SCLC origin. A concentration of 5 IU ml-1 of IFN produced 50% inhibition of colony formation in agar in the WX322 line, whereas a concentration of greater than 10(5) IU ml-1 was required to produce a comparable effect with the NCI-H69 cell line. In contrast, WX322, possessed similar sensitivity to NCI-H69 cells when exposed to a range of cytotoxic agents. Analysis of the cell cycle indicated that IFN increased the percentage of cells in the G0/G1 phase for the WX322 cell line but increased the percentage in S phase for the NCI-H69 line. Growth of the xenograft, from which the cell line was derived, was also inhibited by IFN at doses greater than 10(5) IU/mouse/day. The WX322 cell line whether grown in agar or as a xenograft shows an unusually high sensitivity to IFN and provides an interesting model for studying mechanisms of IFN cytotoxicity to epithelial cells
    corecore