25 research outputs found

    Deciphering the pathogenesis of tendinopathy: a three-stages process

    Get PDF
    Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments

    Effects of Stimulant Medication, Incentives, and Event Rate on Reaction Time Variability in Children With ADHD

    No full text
    This study examined the effects of methylphenidate (MPH) on reaction time (RT) variability in children with attention deficit hyperactivity disorder (ADHD). Using a broad battery of computerized tasks, and both conventional and ex-Gaussian indicators of RT variability, in addition to within-task manipulations of incentive and event rate (ER), this study comprehensively examined the breadth, specificity, and possible moderators of effects of MPH on RT variability. A total of 93 children with ADHD completed a 4-week within-subject, randomized, double-blind, placebo-controlled crossover trial of MPH to identify an optimal dosage. Children were then randomly assigned to receive either their optimal MPH dose or placebo after which they completed five neuropsychological tasks, each allowing trial-by-trial assessment of RTs. Stimulant effects on RT variability were observed on both measures of the total RT distribution (ie, coefficient of variation) as well as on an ex-Gaussian measure examining the exponential portion of the RT distribution (ie, τ). There was minimal, if any, effect of MPH on performance accuracy or RT speed. Within-task incentive and ER manipulations did not appreciably affect stimulant effects across the tasks. The pattern of significant and pervasive effects of MPH on RT variability, and few effects of MPH on accuracy and RT speed suggest that MPH primarily affects RT variability. Given the magnitude and breadth of effects of MPH on RT variability as well as the apparent specificity of these effects of MPH on RT variability indicators, future research should focus on neurophysiological correlates of effects of MPH on RT variability in an effort to better define MPH pharmacodynamics
    corecore