5 research outputs found

    Exposure to parasitic infections determines features and phenotypes of active convulsive epilepsy in Africa

    Get PDF
    Background: Epilepsy affects 70 million people worldwide, 80% of whom are in low-and-middle income countries (LMICs). Infections of the central nervous system (CNS) contribute considerably to the burden of epilepsy in LMICs, but the nature and presentation of epilepsy following these infections is not fully understood. We examined if epilepsy foutcomes are associated with the exposure to parasitic infections. Methods: This was a case-comparison study nested in a cross-sectional survey of people with active convulsive epilepsy, with cases as those exposed to parasitic infections, and comparison as those unexposed. Associations of exposure to parasites with clinical and electroencephalographic features of epilepsy were done using a modified mixed effects Poisson regression model across five sites in Africa. Multiplicative and additive scale (RERI) interactions were explored to determine the effect of co-infections on epilepsy features. Population attributable fractions (PAF) were calculated to determine the proportion of severe clinical and electroencephalographic features of epilepsy attributable to CNS infections. Results: A total of 997 participants with active convulsive epilepsy from the five African sites were analyzed, 51% of whom were males. Exposure to parasitic infections was associated with more frequent seizures in adult epilepsy (relative risk (RR)=2.58, 95% confidence interval (95%CI):1.71-3.89). In children, exposure to any parasite was associated with convulsive status epilepticus (RR=4.68, (95%CI: 3.79-5.78), intellectual disabilities (RR=2.13, 95%CI: 1.35-3.34) and neurological deficits (RR=1.92, 95%CI: 1.42-2.61). Toxoplasma gondii and Onchocerca volvulus interacted synergistically to increase the risk of status epilepticus (RERI=0.91, 95%CI=0.48-1.35) in the data pooled across the sites. Exposure to parasitic infections contributed to 30% of severe features of epilepsy as shown by PAF. Conclusions: Parasitic infections may determine features and phenotypes of epilepsy through synergistic or antagonistic interactions, which can be different in children and adults. Interventions to control or manage infections may reduce complications and improve prognosis in epilepsy

    The use of NDVI and its Derivatives for Monitoring Lake Victoria’s Water Level and Drought Conditions

    Get PDF
    Normalized Difference Vegetation Index (NDVI), which is a measure of vegetation vigour, and lake water levels respond variably to precipitation and its deficiency. For a given lake catchment, NDVI may have the ability to depict localized natural variability in water levels in response to weather patterns. This information may be used to decipher natural from unnatural variations of a given lake’s surface. This study evaluates the potential of using NDVI and its associated derivatives (VCI (vegetation condition index), SVI (standardised vegetation index), AINDVI (annually integrated NDVI), green vegetation function (F g ), and NDVIA (NDVI anomaly)) to depict Lake Victoria’s water levels. Thirty years of monthly mean water levels and a portion of the Global Inventory Modelling and Mapping Studies (GIMMS) AVHRR (Advanced Very High Resolution Radiometer) NDVI datasets were used. Their aggregate data structures and temporal co-variabilities were analysed using GIS/spatial analysis tools. Locally, NDVI was found to be more sensitive to drought (i.e., responded more strongly to reduced precipitation) than to water levels. It showed a good ability to depict water levels one-month in advance, especially in moderate to low precipitation years. SVI and SWL (standardized water levels) used in association with AINDVI and AMWLA (annual mean water levels anomaly) readily identified high precipitation years, which are also when NDVI has a low ability to depict water levels. NDVI also appears to be able to highlight unnatural variations in water levels. We propose an iterative approach for the better use of NDVI, which may be useful in developing an early warning mechanisms for the management of lake Victoria and other Lakes with similar characteristics

    Exposure to parasitic infections determines features and phenotypes of active convulsive epilepsy in Africa

    No full text
    Background: Epilepsy affects 70 million people worldwide, 80% of whom are in low-and-middle income countries (LMICs). Infections of the central nervous system (CNS) contribute considerably to the burden of epilepsy in LMICs, but the nature and presentation of epilepsy following these infections is not fully understood. We examined if epilepsy foutcomes are associated with the exposure to parasitic infections. Methods: This was a case-comparison study nested in a cross-sectional survey of people with active convulsive epilepsy, with cases as those exposed to parasitic infections, and comparison as those unexposed. Associations of exposure to parasites with clinical and electroencephalographic features of epilepsy were done using a modified mixed effects Poisson regression model across five sites in Africa. Multiplicative and additive scale (RERI) interactions were explored to determine the effect of co-infections on epilepsy features. Population attributable fractions (PAF) were calculated to determine the proportion of severe clinical and electroencephalographic features of epilepsy attributable to CNS infections. Results: A total of 997 participants with active convulsive epilepsy from the five African sites were analyzed, 51% of whom were males. Exposure to parasitic infections was associated with more frequent seizures in adult epilepsy (relative risk (RR)=2.58, 95% confidence interval (95%CI):1.71-3.89). In children, exposure to any parasite was associated with convulsive status epilepticus (RR=4.68, (95%CI: 3.79-5.78), intellectual disabilities (RR=2.13, 95%CI: 1.35-3.34) and neurological deficits (RR=1.92, 95%CI: 1.42-2.61). Toxoplasma gondii and Onchocerca volvulus interacted synergistically to increase the risk of status epilepticus (RERI=0.91, 95%CI=0.48-1.35) in the data pooled across the sites. Exposure to parasitic infections contributed to 30% of severe features of epilepsy as shown by PAF. Conclusions: Parasitic infections may determine features and phenotypes of epilepsy through synergistic or antagonistic interactions, which can be different in children and adults. Interventions to control or manage infections may reduce complications and improve prognosis in epilepsy

    Poor Clinical Outcomes for HIV Infected Children on Antiretroviral Therapy in Rural Mozambique: Need for Program Quality Improvement and Community Engagement

    No full text
    corecore