7 research outputs found

    The Discriminatory Value of CYP2D6 Genotyping in Predicting the Dextromethorphan/Dextrorphan Phenotype in Women with Breast Cancer

    Full text link
    BACKGROUND: The growth inhibitory effect of tamoxifen is used for the treatment of breast cancer. Tamoxifen efficacy is mediated by its biotransformation, predominantly via the cytochrome P450 2D6 (CYP2D6) isoenzyme, to the active metabolite endoxifen. We investigated the relationship of CYP2D6 genotypes to the metabolism of dextromethorphan (DM), which is frequently used as a surrogate marker for the formation of endoxifen. METHODS: The CYP2D6 genotype was determined by polymerase chain reaction (PCR) in previously untreated patients with hormone receptor-positive invasive breast cancer considered to receive antihormonal therapy. The DM/dextrorphan (DX) urinary excretion ratios were obtained in a subset of patients by high-pressure liquid chromatography (HPLC)-mediated urine analysis after intake of 25 mg DM. The relationships of genotype and corresponding phenotype were statistically analyzed for association. RESULTS: From 151 patients predicted based on their genotype data for the 'traditional' CYP2D6 phenotype classes poor, intermediate, extensive and ultrarapid, 83 patients were examined for their DM/DX urinary ratios. The genotype-based poor metabolizer status correlated with the DM/DX ratios, whereas the intermediate, extensive and ultrarapid genotypes could not be distinguished based on their phenotype. Citalopram intake did not significantly influence the phenotype. CONCLUSIONS: The DM metabolism can be reliably used to assess the CYP2D6 enzyme activity. The correlation with the genotype can be incomplete and the metabolic ratios do not seem to be compromised by citalopram. DM phenotyping may provide a standardized tool to better assess the CYP2D6 metabolic capacity

    TGFbeta2 and TbetaRII are valid molecular biomarkers for the antiproliferative effects of tamoxifen and tamoxifen metabolites in breast cancer cells

    No full text
    The original publication can be found at www.springerlink.comResponse to treatment with the antiestrogen tamoxifen is variable and at least partially due to its highly complex metabolism. Tamoxifen is transformed by polymorphic and inducible cytochrome P450 enzymes to a large number of metabolites with varying biological activities. The estrogen receptor dependent growth inhibitory effect of antiestrogens is mediated by activation of antiproliferative Transforming Growth Factor beta (TGFβ) signal transduction pathways. The aim of the present study was to establish if TGFβ2 or TGFβ receptor II (TβRII), could be used as markers to assess the pharmacological potency of tamoxifen and its metabolites. Consequently, we analyzed the growth inhibitory effect of tamoxifen and its major metabolites and explored whether it correlated with their capacity to induce TGFβ2 and TβRII expression. Human breast cancer cells (MCF-7 and T47D) were treated with tamoxifen and tamoxifen metabolites and mRNA expression of TGFβ2 and TβRII was analyzed by quantitative RT-PCR. Only two metabolites 4-hydroxytamoxifen and N-desmethyl-4-hydroxytamoxifen had significant antiproliferative activity and were able to induce TGFβ2 and TβRII. Plasma concentrations of these metabolites are usually very low in patients. However, even minor growth inhibitory effects at concentrations which are below the limit of quantification in plasma samples resulted in clearly discernible effects on expression of TGFβ2 and TβRII. Taken together, our data demonstrate that TGFβ2 and TβRII are very specific and sensitive biomarkers for the antiestrogenic activity of tamoxifen metabolites in breast cancer.Miriam B. Buck, Janet K. Coller, Thomas E. Mürdter, Michel Eichelbaum and Cornelius Knabb
    corecore