480 research outputs found
Recent Results on the Accurate Measurements of the Dielectric Constant of Seawater at 1.413GHZ
Measurements of the complex. dielectric constant of seawater at 30.00 psu, 35.00 psu and 38.27 psu over the temperature range from 5 C to 3 5 at 1.413 GHz are given and compared with the Klein-Swift results. A resonant cavity technique is used. The calibration constant used in the cavity perturbation formulas is determined experimentally using methanol and ethanediol (ethylene glycol) as reference liquids. Analysis of the data shows that the measurements are accurate to better than 1.0% in almost all cases studied
Wave Propagation in Gravitational Systems: Late Time Behavior
It is well-known that the dominant late time behavior of waves propagating on
a Schwarzschild spacetime is a power-law tail; tails for other spacetimes have
also been studied. This paper presents a systematic treatment of the tail
phenomenon for a broad class of models via a Green's function formalism and
establishes the following. (i) The tail is governed by a cut of the frequency
Green's function along the ~Im~ axis,
generalizing the Schwarzschild result. (ii) The dependence of the cut
is determined by the asymptotic but not the local structure of space. In
particular it is independent of the presence of a horizon, and has the same
form for the case of a star as well. (iii) Depending on the spatial
asymptotics, the late time decay is not necessarily a power law in time. The
Schwarzschild case with a power-law tail is exceptional among the class of the
potentials having a logarithmic spatial dependence. (iv) Both the amplitude and
the time dependence of the tail for a broad class of models are obtained
analytically. (v) The analytical results are in perfect agreement with
numerical calculations
Infrared conductivity of a one-dimensional charge-ordered state: quantum lattice effects
The optical properties of the charge-ordering () phase of the
one-dimensional (1D) half-filled spinless Holstein model are derived at zero
temperature within a well-known variational approach improved including
second-order lattice fluctuations. Within the phase, the static lattice
distortions give rise to the optical interband gap, that broadens as the
strength of the electron-phonon () interaction increases. The lattice
fluctuation effects induce a long subgap tail in the infrared conductivity and
a wide band above the gap energy. The first term is due to the multi-phonon
emission by the charge carriers, the second to the interband transitions
accompanied by the multi-phonon scattering. The results show a good agreement
with experimental spectra.Comment: 5 figure
Indications of coherence-incoherence crossover in layered transport
For many layered metals the temperature dependence of the interlayer
resistance has a different behavior than the intralayer resistance. In order to
better understand interlayer transport we consider a concrete model which
exhibits this behavior. A small polaron model is used to illustrate how the
interlayer transport is related to the coherence of quasi-particles within the
layers. Explicit results are given for the electron spectral function,
interlayer optical conductivity and the interlayer magnetoresistance. All these
quantities have two contributions: one coherent (dominant at low temperatures)
and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX
Technical Note: Calibration and validation of geophysical observation models
We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided into calibration (Cal) and validation (Val) data sets. Each Cal/Val pair is used to derive the coefficients (from the Cal set) and the accuracy (from the Val set) of the observation model. Combining the results from all Cal/Val pairs provides probability distributions of the model coefficients and model errors. The method is generic and demonstrated using comprehensive matchup sets from two very different disciplines: soil moisture and water quality. The results demonstrate that the method provides robust model coefficients and quantitative measure of the model uncertainty. This approach can be adopted for the calibration/validation of satellite products of land and water surfaces, and the resulting uncertainty can be used as input to data assimilation schemes
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Quantum Monte Carlo and variational approaches to the Holstein model
Based on the canonical Lang-Firsov transformation of the Hamiltonian we
develop a very efficient quantum Monte Carlo algorithm for the Holstein model
with one electron. Separation of the fermionic degrees of freedom by a
reweighting of the probability distribution leads to a dramatic reduction in
computational effort. A principal component representation of the phonon
degrees of freedom allows to sample completely uncorrelated phonon
configurations. The combination of these elements enables us to perform
efficient simulations for a wide range of temperature, phonon frequency and
electron-phonon coupling on clusters large enough to avoid finite-size effects.
The algorithm is tested in one dimension and the data are compared with
exact-diagonalization results and with existing work. Moreover, the ideas
presented here can also be applied to the many-electron case. In the
one-electron case considered here, the physics of the Holstein model can be
described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte
Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo
Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patientâs clinical condition
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
- âŠ