2,536 research outputs found
Tumor-Secreted LOXL2 Activates Fibroblasts through FAK Signaling
Cancer-associated fibroblasts enhance cancer progression when activated by tumor cells through mechanisms not yet fully understood. Blocking mammary tumor cell-derived lysyl oxidase-like 2 (LOXL2) significantly inhibited mammary tumor cell invasion and metastasis in transgenic and orthotopic mouse models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of alpha-smooth muscle actin (alpha-SMA). Using a marker for reticular fibroblasts, it was determined that expression of alpha-SMA was localized to fibroblasts recruited from the host tissue. This marker also revealed that the matrix present in tumors with reduced levels of LOXL2 was more scattered compared with control tumors which exhibited matrices with dense, parallel alignments. Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of alpha-SMA in fibroblasts grown on collagen matrices. Mechanistically, it was determined that LOXL2 activated fibroblasts through integrin mediated focal adhesion kinase activation. These results indicate that inhibition of LOXL2 in tumors not only reduces tumor cell invasion but also attenuates the activation of host cells in the tumor microenvironment. (C) 2013 AACR
The emotional movie database (EMDB): a self-report and psychophysiological study
Film clips are an important tool for evoking
emotional responses in the laboratory. When compared
with other emotionally potent visual stimuli (e.g., pictures),
film clips seem to be more effective in eliciting emotions
for longer periods of time at both the subjective and
physiological levels. The main objective of the present
study was to develop a new database of affective film clips
without auditory content, based on a dimensional approach
to emotional stimuli (valence, arousal and dominance). The
study had three different phases: (1) the pre-selection and
editing of 52 film clips (2) the self-report rating of these
film clips by a sample of 113 participants and (3) psychophysiological
assessment [skin conductance level
(SCL) and the heart rate (HR)] on 32 volunteers. Film clips
from different categories were selected to elicit emotional
states from different quadrants of affective space. The
results also showed that sustained exposure to the affective
film clips resulted in a pattern of a SCL increase and HR
deceleration in high arousal conditions (i.e., horror and
erotic conditions). The resulting emotional movie database
can reliably be used in research requiring the presentation
of non-auditory film clips with different ratings of valence,
arousal and dominance.Portuguese Foundation for Science and Technology with individual grants
(SFRH/BD/41484/2007 and SFRH/BD/64355/2009
Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.
The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts
Recommended from our members
Remarks on Andrew Lang's World Trade Law After Neo-Liberalism
No abstract available
Antikaon production in nucleon-nucleon reactions near threshold
The antikaon production cross section from nucleon-nucleon reactions near
threshold is studied in a meson exchange model. We include both pion and kaon
exchange, but neglect the interference between the amplitudes. In case of pion
exchange the antikaon production cross section can be expressed in terms of the
antikaon production cross section from a pion-nucleon interaction, which we
take from the experimental data if available. Otherwise, a -resonance
exchange model is introduced to relate the different reaction cross sections.
In case of kaon exchange the antikaon production cross section is related to
the elastic and cross sections, which are again taken from
experimental measurements. We find that the one-meson exchange model gives a
satisfactory fit to the available data for the cross section
at high energies. We compare our predictions for the cross section near
threshold with an earlier empirical parameterization and that from phase space
models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.
Viewing Loved Faces Inhibits Defense Reactions: A Health-Promotion Mechanism?
We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love) provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men) viewed black and white photographs of loved (romantic partner, father, mother, and best friend), neutral (unknown), and unpleasant (mutilated) faces. Eye–blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner’s gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.This research was funded by grant P07-SEJ-02964 from Junta de Andalucía (Spain)
Pleiotropic functions of the tumor- and metastasis-suppressing Matrix Metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice
Matrix metalloproteinase-8 (MMP-8; neutrophil collagenase) is an important regulator of innate immunity which has onco-suppressive actions in numerous tumor types
The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase
Tumour metastasis is a complex process involving reciprocal interplay
between cancer cells and host stroma at both primary and secondary
sites, and is strongly influenced by microenvironmental
factors such as hypoxia. Tumour-secreted proteins play a crucial role
in these interactions and present strategic therapeutic potential.
Metastasis of breast cancer to the bone affects approximately 85%
of patients with advanced disease and renders them largely untreatable. Specifically, osteolytic bone lesions, where bone is destroyed,
lead to debilitating skeletal complications and increased patient morbidity
and mortality. The molecular interactions governing the
early events of osteolytic lesion formation are currently unclear.
Here we show hypoxia to be specifically associated with bone relapse
in patients with oestrogen-receptor negative breast cancer. Global
quantitative analysis of the hypoxic secretome identified lysyl oxidase
(LOX) as significantly associated with bone-tropism and relapse.
High expression of LOX in primary breast tumours or systemic delivery
of LOX leads to osteolytic lesion formation whereas silencing or
inhibition of LOX activity abrogates tumour-driven osteolytic lesion
formation. We identify LOX as a novel regulator of NFATc1-driven
osteoclastogenesis,independent of RANK ligand, which disrupts normal
bone homeostasisleading to the formation of focal pre-metastatic
lesions. We show that these lesions subsequently provide a platform
for circulating tumour cells to colonize and form bone metastases.
Our study identifies a novel mechanism of regulation of bone homeostasis
and metastasis, opening up opportunities for novel therapeutic
intervention with important clinical implications
Intraaortic Balloon Pump Counterpulsation and Cerebral Autoregulation: an observational study
The use of Intra-aortic counterpulsation is a well established supportive therapy for patients in cardiac failure or after cardiac surgery. Blood pressure variations induced by counterpulsation are transmitted to the cerebral arteries, challenging cerebral autoregulatory mechanisms in order to maintain a stable cerebral blood flow. This study aims to assess the effects on cerebral autoregulation and variability of cerebral blood flow due to intra-aortic balloon pump and inflation ratio weaning
- …