963 research outputs found
Spectra of magnetic perturbations triggered by pellets in JET plasmas
Aiming at investigating edge localised mode (ELM) pacing for future application on ITER, experiments have been conducted on JET injecting pellets in different plasma configurations, including high confinement regimes with type-I and type-III ELMs, low confinement regimes and Ohmically heated plasmas. The magnetic perturbations spectra and the toroidal mode number, n, of triggered events are compared with those of spontaneous ELMs using a wavelet analysis to provide good time resolution of short-lived coherent modes. It is found that—in all these configurations—triggered events have a coherent mode structure, indicating that pellets can trigger an MHD event basically in every background plasma. Two components have been found in the magnetic perturbations induced by pellets, with distinct frequencies and toroidal mode numbers. In high confinement regimes triggered events have similarities with spontaneous ELMs: both are seen to start from low toroidal mode numbers, then the maximum measured n increases up to about 10 within 0.3 ms before the ELM burst
A variational approach to the optimized phonon technique for electron-phonon problems
An optimized phonon approach for the numerical diagonalization of interacting
electron-phonon systems is proposed. The variational method is based on an
expansion in coherent states that leads to a dramatic truncation in the phonon
space. The reliability of the approach is demonstrated for the extended
Holstein model showing that different types of lattice distortions are present
at intermediate electron-phonon couplings as observed in strongly correlated
systems. The connection with the density matrix renormalization group is
discussed.Comment: 4 figures; submitted to Phys. Rev.
A theoretical approach for the electrochemical characterization of ciliary epithelium
The ciliary epithelium (CE) is the primary site of aqueous humor (AH) production, which
results from the combined action of ultrafiltration and ionic secretion. Modulation of ionic secretion
is a fundamental target for drug therapy in glaucoma, and therefore it is important to identify the
main factors contributing to it. Since several ion transporters have been hypothesized as relevant
players in CE physiology, we propose a theoretical approach to complement experimental methods
in characterizing their role in the electrochemical and fluid-dynamical conditions of CE. As a first
step, we compare two model configurations that differ by (i) types of transporters included for
ion exchange across the epithelial membrane, and by (ii) presence or absence of the intracellular
production of carbonic acid mediated by the carbonic anhydrase enzyme. The proposed model
configurations do not include neurohumoral mechanisms such as P2Y receptor dependent, cAMP
or calcium dependent pathways, which occur in the ciliary epithelium bilayer and influence the
activity of ion transporters, pumps and channels present in the cell membrane. Results suggest
that one of the two configurations predicts sodium and potassium intracellular concentrations and
transmembrane potential much more accurately than the other. Because of its quantitative prediction
power, the proposed theoretical approach may help relate phenomena at the cellular scale, that cannot
be accessed clinically, with phenomena occuring at the scale of the whole eye, for which clinical
assessment is feasible
Antiferromagnetic ordering in a 90 K copper oxide superconductor
Using elastic neutron scattering, we evidence a commensurate
antiferromagnetic Cu(2) order (AF) in the superconducting (SC) high-
cuprate (y=0.013, =93 K). As
in the Co-free system, the spin excitation spectrum is dominated by a magnetic
resonance peak at 41 meV but with a reduced spectral weight. The substitution
of Co thus leads to a state where AF and SC cohabit showing that the CuO
plane is a highly antiferromagnetically polarizable medium even for a sample
where T remains optimum.Comment: 3 figure
Angle-resolved photoemission in doped charge-transfer Mott insulators
A theory of angle-resolved photoemission (ARPES) in doped cuprates and other
charge-transfer Mott insulators is developed taking into account the realistic
(LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon
interaction, and a random field potential. In most of these materials the first
band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the
coherent part of the ARPES spectra with the oxygen hole spectral function
calculated in the non-crossing (ladder) approximation and with the exact
spectral function of a one-dimensional hole in a random potential. Some unusual
features of ARPES including the polarisation dependence and spectral shape in
YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or
small. The theory is compatible with the doping dependence of kinetic and
thermodynamic properties of cuprates as well as with the d-wave symmetry of the
superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.
A Theory for High- Superconductors Considering Inhomogeneous Charge Distribution
We propose a general theory for the critical and pseudogap
temperature dependence on the doping concentration for high- oxides,
taking into account the charge inhomogeneities in the planes. The well
measured experimental inhomogeneous charge density in a given compound is
assumed to produce a spatial distribution of local . These differences
in the local charge concentration is assumed to yield insulator and metallic
regions, possibly in a stripe morphology. In the metallic region, the
inhomogeneous charge density yields also spatial distributions of
superconducting critical temperatures and zero temperature gap
. For a given sample, the measured onset of vanishing gap
temperature is identified as the pseudogap temperature, that is, , which
is the maximum of all . Below , due to the distribution of
's, there are some superconducting regions surrounded by insulator or
metallic medium. The transition to a superconducting state corresponds to the
percolation threshold among the superconducting regions with different
's. To model the charge inhomogeneities we use a double branched
Poisson-Gaussian distribution. To make definite calculations and compare with
the experimental results, we derive phase diagrams for the BSCO, LSCO and YBCO
families, with a mean field theory for superconductivity using an extended
Hubbard Hamiltonian. We show also that this novel approach provides new
insights on several experimental features of high- oxides.Comment: 7 pages, 5 eps figures, corrected typo
Doping dependence of the superconducting gap in Bi2Sr2CaCu2O{8 + delta}
Bi2Sr2CaCu2O{8 + \delta} crystals with varying hole concentrations (0.12 < p
< 0.23) were studied to investigate the effects of doping on the symmetry and
magnitude of the superconducting gap. Electronic Raman scattering experiments
that sample regions of the Fermi surface near the diagonal (B_{2g}) and
principal axes (B_{1g}) of the Brillouin Zone have been utilized. The frequency
dependence of the Raman response function at low energies is found to be linear
for B_{2g} and cubic for B_{1g} (T< T_c). The latter observations have led us
to conclude that the doping dependence of the superconducting gap is consistent
with d_{x^2-y^2} symmetry, for slightly underdoped and overdoped crystals.
Studies of the pair-breaking peak found in the B_{1g} spectra demonstrate that
the magnitude of the maximum gap decreases monotonically with increasing hole
doping, for p > 0.12. Based on the magnitude of the B_{1g} renormalization, it
is found that the number of quasiparticles participating in pairing increases
monotonically with increased doping. On the other hand, the B_{2g} spectra show
a weak "pair-breaking peak" that follows a parabolic-like dependence on hole
concentration, for 0.12 < p < 0.23.Comment: 9 pages REvTex document including 8 eps figures; new table II;
changes to Fig. 5 and tex
Hole concentration and phonon renormalization in Ca-doped YBa_2Cu_3O_y (6.76 < y < 7.00)
In order to access the overdoped regime of the YBa_2Cu_3O_y phase diagram, 2%
Ca is substituted for Y in YBa_2Cu_3O_y (y = 7.00,6.93,6.88,6.76). Raman
scattering studies have been carried out on these four single crystals.
Measurements of the superconductivity-induced renormalization in frequency
(Delta \omega) and linewidth (\Delta 2\gamma) of the 340 cm^{-1} B_{1g} phonon
demonstrate that the magnitude of the renormalization is directly related to
the hole concentration (p), and not simply the oxygen content. The changes in
\Delta \omega with p imply that the superconducting gap (\Delta_{max})
decreases monotonically with increasing hole concentration in the overdoped
regime, and \Delta \omega falls to zero in the underdoped regime. The linewidth
renormalization \Delta 2\gamma is negative in the underdoped regime, crossing
over at optimal doping to a positive value in the overdoped state.Comment: 18 pages; 5 figures; submitted to Phys. Rev. B Oct. 24, 2002 (BX8292
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
- …