44,255 research outputs found
Symmetries of hadrons after unbreaking the chiral symmetry
We study hadron correlators upon artificial restoration of the spontaneously
broken chiral symmetry. In a dynamical lattice simulation we remove the lowest
lying eigenmodes of the Dirac operator from the valence quark propagators and
study evolution of the hadron masses obtained. All mesons and baryons in our
study, except for a pion, survive unbreaking the chiral symmetry and their
exponential decay signals become essentially better. From the analysis of the
observed spectroscopic patterns we conclude that confinement still persists
while the chiral symmetry is restored. All hadrons fall into different chiral
multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking
the chiral symmetry. We also observe signals of some higher symmetry that
includes chiral symmetry as a subgroup. Finally, from comparison of the \Delta
- N splitting before and after unbreaking of the chiral symmetry we conclude
that both the color-magnetic and the flavor-spin quark-quark interactions are
of equal importance.Comment: 12 pages, 14 figures; final versio
Wilson, fixed point and Neuberger's lattice Dirac operator for the Schwinger model
We perform a comparison between different lattice regularizations of the
Dirac operator for massless fermions in the framework of the single and two
flavor Schwinger model. We consider a) the Wilson-Dirac operator at the
critical value of the hopping parameter; b) Neuberger's overlap operator; c)
the fixed point operator. We test chiral properties of the spectrum, dispersion
relations and rotational invariance of the mesonic bound state propagators.Comment: Revised version; 13 pages (LaTeX), 3 figures (EPS
- …
