841 research outputs found

    Design of a scanning tunneling microscope for electrochemical applications

    Get PDF
    A design for a scanning tunneling microscope that is well suited for electrochemical investigations is presented. The construction of the microscope ensures that only the tunneling tip and the sample participate in electrochemical reactions. The design also allows rapid replacement of the tip or sample, and enables facile introduction of auxiliary electrodes for use in electrochemical experiments. The microscope utilizes stepper motor driven approach mechanics in order to achieve fully remote operation and to allow reproducible coarse control of tip/sample spacings for electrochemical experiments. Highly ordered pyrolytic graphite images at atomic resolution in air and aqueous solutions can be obtained with this microscope

    Characterization of glucose oxidation by gold nanoparticles using nanoceria

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jcis.2014.04.025." © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Gold nanoparticles (AuNPs) can oxidize glucose, producing hydrogen peroxide and gluconic acid, which are the same products as those generated by glucose oxidase (GOx). In this regard, AuNPs are a nanozyme. Herein, a new colorimetric method is developed to understand the surface chemistry of gold nanoparticles for this oxidation reaction. The color of nanoceria is changed to yellow by the hydrogen peroxide generated during glucose oxidation. Using this assay, we find that adsorption of small molecules such as citrate does not deactivate AuNPs, while adsorption of polymers including serum proteins and high molecular weight polyethylene glycol inhibits glucose oxidation. In addition to glucose, AuNPs can also oxidize galactose. Therefore, this reaction is unlikely to be directly useful for glucose detection for biomedical applications. On the other hand, AuNPs might serve as a general oxidase for a broad range of substrates. The glucose oxidation reaction is slower at lower pH. Since the reaction generates an acid product, glucose oxidation becomes slower as the reaction proceeds. The effects of temperature, AuNP size, and reaction kinetics have been systematically studied. This work provides new insights regarding the surface chemistry of AuNPs as a nanozyme.University of Waterloo || Canadian Foundation for Innovation || Natural Sciences and Engineering Research Council || Ontario Ministry of Research and Innovation |

    Dissecting Colloidal Stabilization Factors in Crowded Polymer Solutions by Forming Self-Assembled Monolayers on Gold Nanoparticles

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Langmuir, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see [insert ACS Articles on Request author-directed link to Published Work, see Lang, N. J., Liu, B., Zhang, X., & Liu, J. (2013). Dissecting Colloidal Stabilization Factors in Crowded Polymer Solutions by Forming Self-Assembled Monolayers on Gold Nanoparticles. Langmuir, 29(20), 6018–6024. https://doi.org/10.1021/la3051093An ideal colloidal system should be highly stable in a diverse range of buffer conditions while still retaining its surface accessibility. We recently reported that dispersing citrate-capped gold nanoparticles (AuNPs) in polymers, such as polyethylene glycol (PEG), can achieve such a goal because of contributions from depletion stabilization. Because AuNPs can weakly adsorb PEG to exert steric stabilization and the remaining citrate can impart charge stabilization, the extent of the contribution of depletion stabilization is unclear. In this work, we aim to dissect the contribution of each stabilizing factor. This is achieved by coating AuNPs with a layer of thiolated compound, which inhibits the adsorption of PEG and also allows for the control of surface charge. We found that depletion stabilization alone was insufficient to stabilize AuNPs at room temperature. However, when working together with other stabilization mechanisms, ultrahigh stability can be achieved. The size of both AuNPs and PEG was systematically varied, and the trends were compared to theoretical calculations. Finally, we report the importance of the surface chemistry of commercial AuNPs.University of Waterloo || Canadian Foundation for Innovation || Natural Sciences and Engineering Research Council || Ontario Ministry of Research and Innovation |

    Analyzing Happiness: Investigation on Happy Moments using a Bag-of-Words Approach and Related Ethical Discussions

    Get PDF
    In this research paper, we analyzed what moments and activities make people happy, based on a collection of happy moments. We are focusing on specific happy moments from a collection of text responses that people have shared through the crowd-sourcing platform: Amazon Mechanical Turk (MTurk). Using crowd-sourcing to collect our data allows us to advance our understanding of the cause of happiness, by focusing on words and real human experiences. Workers of MTurk were asked to reflect on what makes them happy in a given period and share three specific moments in complete sentences. Through text-based analysis, we will look to see what other components have a role in making a specific event happy and further analyze how we can classify such words. Also, we dive deeper into specific subcategories of classifiers in an attempt to form insights about their happiness level based on specific factors. With the goal to extract features from the text in HappyDB, in this study we used the bag of words approach. Through doing so, our results were successful at predicting the happiness category, concerning both accuracy and context. Our models were able to accomplish the goal of understanding a happy moment and fit such a moment into one of the seven ground truth happiness categories we set at the beginning of this study. We finished the article with the ethical perspective of such research works and related social implications

    Design of a high index contrast arrayed waveguide grating

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and, (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2003.S.B. and S.M. theses issued separately.Includes bibliographical references (p. 115-119).Arrayed waveguide gratings (AWGs) are useful structures for the implementation of wavelength division multiplexing. The AWG consists of an input splitter, a dispersive waveguide array which creates the wavelength demultiplexing and multiplexing effects, and an output coupler. Because the dispersive waveguide array consists of bent waveguides, the size of an AWG is limited by the light loss in the bends. In their current form, silica-based gratings are too large to be made cheaply or to use as an integrated component. The proposed solution is to redesign the AWG using high index contrast materials for tight confinement of the waveguide modes and, consequently, low bend loss. A rough design is presented for a high index contrast AWG using multimode interference couplers as the coupling stages. The major components were simulated using finite difference time domain (FDTD) techniques to find low loss but rather high crosstalk. A second possible design is also presented, making use of a coupled waveguide array as the input element. The coupling coefficients of as many as 41 coupled waveguides were adjusted to create a Gaussian profile as an input to the dispersive section of the AWG. The output coupler, however, will make use of more standard free space diffraction techniques, making the overall concept a unique mixture of waveguide and free space optical elements.by Ryan N. Lang.S.B.M.Eng

    Observable signatures of general relativistic dynamics in compact binaries

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 217-237).The effects of general relativity (GR) in astrophysical systems are often difficult to calculate, but they can have important consequences for observables. This thesis considers the impact of previously-ignored GR effects in two different types of compact binary systems. The first is the coalescence of massive black holes in high-redshift galaxies. The gravitational waves (GWs) from these systems can be detected by the proposed low-frequency gravitational wave detector LISA and used to determine the various parameters which characterize the binary. Most studies of LISA's parameter estimation capability have ignored a significant piece of physics: the relativistic precession of the binary's angular momentum vectors. In the first two-thirds of this thesis, we show how including precession effects in the waveform model helps to break various degeneracies and improve the expected parameter errors. We give special attention to the localization parameters, sky position and distance. When distance is converted to an approximate redshift, these parameters define a "pixel" on the sky in which astronomers can search for an electromagnetic counterpart to the GW event. The final third of this thesis focuses on stellar -mass compact binaries in which at least one member is a neutron star. The measurement of tidal effects in these systems may shed some light on the poorly understood high-density equation of state. We first calculate the point at which a neutron star tidally disrupts in the field of a black hole. Previous calculations of this effect have used Newtonian self-gravity, which is inappropriate for a neutron star; we correct this by using relativistic perturbation theory.(cont.) We then turn to small tidal distortions of neutron stars, which can be characterized by a quantity known as the Love number. We calculate relativistic Love numbers for a wide variety of equations of state and investigate their impact on the GWs from neutron star-neutron star binaries.by Ryan Nathan Lang.Ph.D

    Beneficial Aerodynamic Effect of Wing Scales on the Climbing Flight of Butterflies

    Full text link
    It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%–18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale\u27s effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency

    An in-silico planning study of stereotactic body radiation therapy for polymetastatic patients with more than ten extra-cranial lesions

    Get PDF
    BACKGROUND AND PURPOSE Limited data is available about the feasibility of stereotactic body radiation therapy (SBRT) for treating more than five extra-cranial metastases, and almost no data for treating more than ten. The aim of this study was to investigate the feasibility of SBRT in this polymetatstatic setting. MATERIALS AND METHODS Consecutive metastatic melanoma patients with more than ten extra-cranial metastases and a maximum lesion diameter below 11 cm were selected from a single-center prospective registry for this in-silico planning study. For each patient, SBRT plans were generated to treat all metastases with a prescribed dose of 5x7Gy, and dose-limiting organs (OARs) were analyzed. A cell-kill based inverse planning approach was used to automatically determine the maximum deliverable dose to each lesion individually, while respecting all OARs constraints. RESULTS A total of 23 polymetastatic patients with a medium of 17 metastases (range, 11-51) per patient were selected. SBRT plans with sufficient target coverage and respected OARs dose constraints were achieved in 16 out of 23 patients. In the remaining seven patients, the lungs V5Gy < 80 % and the liver D700 cm3^{3} < 15Gy were most frequently the dose-limiting constraints. The cell-kill based planning approach allowed optimizing the dose administration depending on metastases total volume and location. CONCLUSION This retrospective planning study shows the feasibility of definitive SBRT for 70% of polymetastatic patients with more than ten extra-cranial lesions and proposes the cell-killing planning approach as an approach to individualize treatment planning in polymetastatic patients'
    • …
    corecore