20,750 research outputs found
Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells
Frequency dependencies of optical characteristics (reflection, transmission
and absorption of light) of a quantum well are investigated in a vicinity of
interband resonant transitions in a case of two closely located excited energy
levels. A wide quantum well in a quantizing magnetic field directed normally to
the quantum-well plane, and monochromatic stimulating light are considered.
Distinctions between refraction coefficients of barriers and quantum well, and
a spatial dispersion of the light wave are taken into account. It is shown that
at large radiative lifetimes of excited states in comparison with nonradiative
lifetimes, the frequency dependence of the light reflection coefficient in the
vicinity of resonant interband transitions is defined basically by a curve,
similar to the curve of the anomalous dispersion of the refraction coefficient.
The contribution of this curve weakens at alignment of radiative and
nonradiative times, it is practically imperceptible at opposite ratio of
lifetimes . It is shown also that the frequency dependencies similar to the
anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure
Elastic Light Scattering by Semiconductor Quantum Dots
Elastic light scattering by low-dimensional semiconductor objects is
investigated theoretically. The differential cross section of resonant light
scattering on excitons in quantum dots is calculated. The polarization and
angular distribution of scattered light do not depend on the quantum-dot form,
sizes and potential configuration if light wave lengths exceed considerably the
quantum-dot size. In this case the magnitude of the total light scattering
cross section does not depend on quantum-dot sizes. The resonant total light
scattering cross section is about a square of light wave length if the exciton
radiative broadening exceeds the nonradiative broadening. Radiative broadenings
are calculated
Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well
Reflectance, transmittance and absorbance of a symmetric light pulse, the
carrying frequency of which is close to the frequency of interband transitions
in a quantum well, are calculated. Energy levels of the quantum well are
assumed discrete, and two closely located excited levels are taken into
account. A wide quantum well (the width of which is comparable to the length of
the light wave, corresponding to the pulse carrying frequency) is considered,
and the dependance of the interband matrix element of the momentum operator on
the light wave vector is taken into account. Refractive indices of barriers and
quantum well are assumed equal each other. The problem is solved for an
arbitrary ratio of radiative and nonradiative lifetimes of electronic
excitations. It is shown that the spatial dispersion essentially affects the
shapes of reflected and transmitted pulses. The largest changes occur when the
radiative broadening is close to the difference of frequencies of interband
transitions taken into account.Comment: 7 pages, 5 figure
Transmission of a Symmetric Light Pulse through a Wide QW
The reflection, transmission and absorption of a symmetric electromagnetic
pulse, which carrying frequency is close to the frequency of an interband
transition in a QW (QW), are obtained. The energy levels of a QW are assumed
discrete, one exited level is taken into account. The case of a wide QW is
considered when a length of the pulse wave, appropriate to the carrying
frequency, is comparable to the QW's width. In figures the time dependencies of
the dimensionless reflection, absorption are transmission are represented. It
is shown, that the spatial dispersion and a distinction in refraction indexes
influence stronger reflection.Comment: 8 pages,8 figures with caption
Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations
The bases of the theory of light reflection and absorption by low-dimensional
semiconductor objects (quantum wells, wires and dots) at both monochromatic and
pulse irradiations and at any form of light pulses are developed. The
semiconductor object may be placed in a stationary quantizing magnetic field.
As an example the case of normal light incidence on a quantum well surface is
considered. The width of the quantum well may be comparable to the light wave
length and number of energy levels of electronic excitations is arbitrary. For
Fourier-components of electric fields the integral equation (similar to the
Dyson-equation) and solutions of this equation for some individual cases are
obtained.Comment: 14 page
Quantum phase transition in the Dicke model with critical and non-critical entanglement
We study the quantum phase transition of the Dicke model in the classical
oscillator limit, where it occurs already for finite spin length. In contrast
to the classical spin limit, for which spin-oscillator entanglement diverges at
the transition, entanglement in the classical oscillator limit remains small.
We derive the quantum phase transition with identical critical behavior in the
two classical limits and explain the differences with respect to quantum
fluctuations around the mean-field ground state through an effective model for
the oscillator degrees of freedom. With numerical data for the full quantum
model we study convergence to the classical limits. We contrast the classical
oscillator limit with the dual limit of a high frequency oscillator, where the
spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An
alternative limit can be defined for the Rabi case of spin length one-half, in
which spin frequency renormalization replaces the quantum phase transition.Comment: 1o pages, 10 figures, published versio
Profile alterations of a symmetrical light pulse coming through a quantum well
The theory of a response of a two-energy-level system, irradiated by
symmetrical light pulses, has been developed.(Suchlike electronic system
approximates under the definite conditions a single ideal quantum well (QW) in
a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or
in magnetic field absence.) The general formulae for the time-dependence of
non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission
{\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown
that the singularities of three types exist on the dependencies {\cal R}(t),
{\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal
A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0
takes place. The oscillations are more easily observable when
\Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection
and transparency singularities are examined when the frequency \omega_l is
detuned.Comment: 9 pages, 13 figures with caption
Low-energy models for correlated materials: bandwidth renormalization from Coulombic screening
We provide a prescription for constructing Hamiltonians representing the low
energy physics of correlated electron materials with dynamically screened
Coulomb interactions. The key feature is a renormalization of the hopping and
hybridization parameters by the processes that lead to the dynamical screening.
The renormalization is shown to be non-negligible for various classes of
correlated electron materials. The bandwidth reduction effect is necessary for
connecting models to materials behavior and for making quantitative predictions
for low-energy properties of solids.Comment: 4 pages, 2 figure
Efficient DMFT-simulation of the Holstein-Hubbard Model
We present a method for solving impurity models with electron-phonon
coupling, which treats the phonons efficiently and without approximations. The
algorithm is applied to the Holstein-Hubbard model in the dynamical mean field
approximation, where it allows access to strong interactions, very low
temperatures and arbitrary fillings. We show that a renormalized
Migdal-Eliashberg theory provides a reasonlable description of the phonon
contribution to the electronic self energy in strongly doped systems, but fails
if the quasiparticle energy becomes of order of the phonon frequency.Comment: Published versio
- …