17,320 research outputs found
Nonlinear Realizations of Supersymmetry and Other Symmetries
Simultaneous nonlinear realizations of spontaneously broken supersymmetry in
conjunction with other spontaneous and/or explicitly broken symmetries
including R symmetry, global chiral symmetry, dilatations and the
superconformal symmetries is reviewed.Comment: 15 pages, invited brief review for Mod. Phys. Lett.
A Four-Unit-Cell Periodic Pattern of Quasiparticle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+d
Scanning tunneling microscopy is used to image the additional quasiparticle
states generated by quantized vortices in the high-Tc superconductor
Bi2Sr2CaCu2O8+d. They exhibit a Cu-O bond oriented 'checkerboard' pattern, with
four unit cell (4a0) periodicity and a ~30 angstrom decay length. These
electronic modulations may be related to the magnetic field-induced, 8a0
periodic, spin density modulations of decay length ~70 angstroms recently
discovered in La1.84Sr0.16CuO4. The proposed explanation is a spin density wave
localized surrounding each vortex core. General theoretical principles predict
that, in the cuprates, a localized spin modulation of wavelength L should be
associated with a corresponding electronic modulation of wavelength L/2, in
good agreement with our observations.Comment: 10 pages, 3 figure
Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells
Frequency dependencies of optical characteristics (reflection, transmission
and absorption of light) of a quantum well are investigated in a vicinity of
interband resonant transitions in a case of two closely located excited energy
levels. A wide quantum well in a quantizing magnetic field directed normally to
the quantum-well plane, and monochromatic stimulating light are considered.
Distinctions between refraction coefficients of barriers and quantum well, and
a spatial dispersion of the light wave are taken into account. It is shown that
at large radiative lifetimes of excited states in comparison with nonradiative
lifetimes, the frequency dependence of the light reflection coefficient in the
vicinity of resonant interband transitions is defined basically by a curve,
similar to the curve of the anomalous dispersion of the refraction coefficient.
The contribution of this curve weakens at alignment of radiative and
nonradiative times, it is practically imperceptible at opposite ratio of
lifetimes . It is shown also that the frequency dependencies similar to the
anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure
Temperature- and quantum phonon effects on Holstein-Hubbard bipolarons
The one-dimensional Holstein-Hubbard model with two electrons of opposite
spin is studied using an extension of a recently developed quantum Monte Carlo
method, and a very simple yet rewarding variational approach, both based on a
canonically transformed Hamiltonian. The quantum Monte Carlo method yields very
accurate results in the regime of small but finite phonon frequencies,
characteristic of many strongly correlated materials such as, e.g., the
cuprates and the manganites. The influence of electron-electron repulsion,
phonon frequency and temperature on the bipolaron state is investigated.
Thermal dissociation of the intersite bipolaron is observed at high
temperatures, and its relation to an existing theory of the manganites is
discussed.Comment: 12 pages, 7 figures; final version, accepted for publication in Phys.
Rev.
Algebraic Geometry over Free Metabelian Lie Algebra I: U-Algebras and Universal Classes
This paper is the first in a series of three, the aim of which is to lay the
foundations of algebraic geometry over the free metabelian Lie algebra . In
the current paper we introduce the notion of a metabelian Lie -algebra and
establish connections between metabelian Lie -algebras and special matrix
Lie algebras. We define the -localisation of a metabelian Lie
-algebra and the direct module extension of the Fitting's radical of
and show that these algebras lie in the universal closure of .Comment: 34 page
Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions
Resistivity measurements have been performed on a low (LR)- and high
(HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor.
While the HR sample was synthesized following the standard procedure, the LR
crystal is a result of a somewhat modified synthesis route. According to their
residual resistivities and residual resistivity ratios, the LR crystal is of
distinctly superior quality. He-gas pressure was used to study the effect of
hydrostatic pressure on the different transport regimes for both variants. The
main results of these comparative investigations are (i) a significant part of
the inelastic-scattering contribution, which causes the anomalous rho(T)
maximum in standard HR crystals around 90 K, is sample dependent, i.e.
extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a
strongly temperature-dependent behavior at T > T* to an only weakly T-dependent
rho(T) at T < T* is unaffected by this scattering contribution and thus marks
an independent property, most likely a second-order phase transition, (iii)
both variants reveal a rho(T) proportional to AT^2 dependence at low
temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent
coefficients A and upper bounds for the T^2 behavior measured by T_0. The
latter result is inconsistent with the T^2 dependence originating from coherent
Fermi-liquid excitations.Comment: 8 pages, 6 figure
Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well
Reflectance, transmittance and absorbance of a symmetric light pulse, the
carrying frequency of which is close to the frequency of interband transitions
in a quantum well, are calculated. Energy levels of the quantum well are
assumed discrete, and two closely located excited levels are taken into
account. A wide quantum well (the width of which is comparable to the length of
the light wave, corresponding to the pulse carrying frequency) is considered,
and the dependance of the interband matrix element of the momentum operator on
the light wave vector is taken into account. Refractive indices of barriers and
quantum well are assumed equal each other. The problem is solved for an
arbitrary ratio of radiative and nonradiative lifetimes of electronic
excitations. It is shown that the spatial dispersion essentially affects the
shapes of reflected and transmitted pulses. The largest changes occur when the
radiative broadening is close to the difference of frequencies of interband
transitions taken into account.Comment: 7 pages, 5 figure
Superlight small bipolarons
Recent angle-resolved photoemission spectroscopy (ARPES) has identified that
a finite-range Fr\"ohlich electron-phonon interaction (EPI) with c-axis
polarized optical phonons is important in cuprate superconductors, in agreement
with an earlier proposal by Alexandrov and Kornilovitch. The estimated
unscreened EPI is so strong that it could easily transform doped holes into
mobile lattice bipolarons in narrow-band Mott insulators such as cuprates.
Applying a continuous-time quantum Monte-Carlo algorithm (CTQMC) we compute the
total energy, effective mass, pair radius, number of phonons and isotope
exponent of lattice bipolarons in the region of parameters where any
approximation might fail taking into account the Coulomb repulsion and the
finite-range EPI. The effects of modifying the interaction range and different
lattice geometries are discussed with regards to analytical
strong-coupling/non-adiabatic results. We demonstrate that bipolarons can be
simultaneously small and light, provided suitable conditions on the
electron-phonon and electron-electron interaction are satisfied. Such light
small bipolarons are a necessary precursor to high-temperature Bose-Einstein
condensation in solids. The light bipolaron mass is shown to be universal in
systems made of triangular plaquettes, due to a novel crab-like motion. Another
surprising result is that the triplet-singlet exchange energy is of the first
order in the hopping integral and triplet bipolarons are heavier than singlets
in certain lattice structures at variance with intuitive expectations. Finally,
we identify a range of lattices where superlight small bipolarons may be
formed, and give estimates for their masses in the anti-adiabatic
approximation.Comment: 31 pages. To appear in J. Phys.: Condens. Matter, Special Issue
'Mott's Physics
- …