3 research outputs found

    Search for long-lived supersymmetry in final states with jets and missing energy in the CMS detector

    No full text
    An inclusive search for supersymmetry in final states with jets and missing transverse momentum is performed in proton-proton collisions at a centre-of-mass energy of 13 TeV. A data sample with an integrated luminosity of 35.9 fb-1 recorded by the CMS detector in 2016 at the CERN LHC is analysed. The observed signal candidate event counts are found to be in agreement with the standard model expectation. Within the context of simplified models, the masses of promptly decaying bottom, top and mass-degenerate light-flavour squarks are excluded at 95% confidence level up to 1050, 1000 and 1325 GeV, respectively. The gluino mass is excluded up to 1900, 1650 and 1650 GeV for a gluino decaying promptly via the aforementioned squarks. The result is also interpreted in the context of simplified models of split supersymmetry. Lower limits are placed on the mass of a long-lived gluino for a wide range of lifetimes. Gluino masses up to 1750 and 900 GeV are excluded for gluinos with a lifetime of 1 mm and metastable gluinos, respectively. These results provide complementary coverage to dedicated searches for long-lived particles at the LHC.Open Acces

    Searches for dark matter at CMS in events with missing transverse energy

    No full text
    Many theories predict candidates to the dark matter particles that are light enough to be produced at the LHC. This talk presents the searches for dark matter at CMS in events with missing transverse energy, focusing on the recent results obtained using data collected in 2016.Many theories predict candidates to the dark matter particles that are light enough to be produced at the LHC. Various searches for dark matter at CMS in events with missing transverse energy using up to 12.9 fb−1^{-1} of data are presented. The final states considered include jets, W and Z bosons, top and bottom quarks, and Higgs bosons. Limits are set on various simplified models

    The CMS Level-1 Calorimeter Trigger for LHC Run II

    No full text
    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was completed in two stages, with the first running in 2015 for proton and Heavy Ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Large Hadron Collider (LHC) Run II. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Sophisticated and innovative algorithms are now the core of the first decision layer of the experiment. The system has been able to adapt to the outstanding performance of the LHC, which ran with an instantaneous luminosity well above design. The performance of the system for single physics objects are presented along with the optimizations foreseen to maintain the thresholds for the harsher conditions expected during the LHC Run II and Run III periods
    corecore