39 research outputs found

    Early inhalant allergen sensitization at component level: an analysis in atopic Dutch children

    Get PDF
    BackgroundAllergic rhinitis is a common respiratory disease in children and sensitization to inhalant allergens plays a significant role in its development. However, limited knowledge exists regarding sensitization profiles of inhalant allergen components in atopic children, particularly in the very young individuals. Understanding these profiles could provide insights into the early development of allergic rhinitis. The objective of this cross-sectional retrospective study was to evaluate the IgE-sensitization profiles to multiple inhalant allergen components and their clinical relevance in Dutch atopic children, with specific focus on children under the age of 4 years.MethodsA total of 243 atopic children were included in the study and sensitization profiles were analyzed using multiplex microarray analysis (ISAC). Clinical information was obtained from records of a pediatric allergy outpatient clinic between 2011 and 2020. Specific IgE responses to inhalation allergen components from five allergen sources (grass pollen, tree pollen, house dust mite, cat and dog), were examined. The study encompassed children of different age groups and compared those with and without symptoms.ResultsThe results demonstrated that sensitization to inhalant allergen components was present in 92% of the cohort. Sensitization was already evident at a young age (87%), including infancy, with a rapid increase in prevalence after 1 year of age. House dust mite emerged as the most predominant sensitizing allergen in early childhood, followed by tree pollen in later years. Sensitization patterns were similar between symptomatic and asymptomatic children, although symptomatic children exhibited higher frequencies and values. The sensitization profiles in very young children were comparable to those of children across all age groups.ConclusionThese findings highlight the presence of sensitization to inhalant allergen components and the early onset of allergic rhinitis before the age of 4, including infancy, in Dutch atopic children. Notable allergen molecules in Dutch atopic children under the age of 4 years include Bet v 1, Fel d 1, Der f 1, Der p 1, Der p 10 and Phl p 4, with house dust mite sensitization being the most common among Dutch infants. Moreover, the prevalence of sensitization to inhalant allergens in this Dutch cohort surpassed that of general European populations, emphasizing the importance of early assessment and management of allergic rhinitis in young atopic children

    Improving successful introduction after a negative food challenge test: How to achieve the best result?

    Get PDF
    Oral food challenges (OFC) confirm or exclude the presence of a food allergy. The outcome can be positive (allergic symptoms), inconclusive, o

    Pre-launch calibration results of the TROPOMI payload on-board the Sentinel-5 Precursor satellite

    Get PDF
    The Sentinel-5 Precursor satellite was successfully launched on 13 October 2017, carrying the Tropospheric Monitoring Instrument (TROPOMI) as its single payload. TROPOMI is the next-generation atmospheric sounding instrument, continuing the successes of GOME, SCIAMACHY, OMI, and OMPS, with higher spatial resolution, improved sensitivity, and extended wavelength range. The instrument contains four spectrometers, divided over two modules sharing a common telescope, measuring the ultraviolet, visible, near-infrared, and shortwave infrared reflectance of the Earth. The imaging system enables daily global coverage using a push-broom configuration, with a spatial resolution as low as 7×3.5&thinsp;km2 in nadir from a Sun-synchronous orbit at 824&thinsp;km and an Equator crossing time of 13:30 local solar time. This article reports the pre-launch calibration status of the TROPOMI payload as derived from the on-ground calibration effort. Stringent requirements are imposed on the quality of on-ground calibration in order to match the high sensitivity of the instrument. A new methodology has been employed during the analysis of the obtained calibration measurements to ensure the consistency and validity of the calibration. This was achieved by using the production-grade Level 0 to 1b data processor in a closed-loop validation set-up. Using this approach the consistency between the calibration and the L1b product, as well as confidence in the obtained calibration result, could be established. This article introduces this novel calibration approach and describes all relevant calibrated instrument properties as they were derived before launch of the mission. For most of the relevant properties compliance with the calibration requirements could be established, including the knowledge of the instrument spectral and spatial response functions. Partial compliance was established for the straylight correction; especially the out-of-spectral-band correction for the near-infrared channel needs future validation. The absolute radiometric calibration of the radiance and irradiance responsivity is compliant with the high-level mission requirements, but not with the stricter calibration requirements as the available on-ground validation shows. The relative radiometric calibration of the Sun port was non-compliant. The non-compliant subjects will be addressed during the in-flight commissioning phase in the first 6 months following launch.</p

    Theedrinken tussen steen- en panovens

    No full text

    De "Brinkbrug" te Schalkwijk

    No full text

    Een aardewerkbord met een rebus

    No full text
    Vijf maal een W op aardewerk, gevonden bij een opgraving in 1977 aan de Schalkwijkse Wetering

    De Oegstgeesterdakpan en de Antonia-Hoeve te Schalkwijk

    No full text
    Betreft dakpannen, vervaardigd door Victor Josson in de tweede helft der 19e en het begin der 20e eeuw
    corecore