33 research outputs found

    Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450

    Get PDF
    Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ~3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2

    Diversification of Catalytic Function in a Synthetic Family of Chimeric Cytochrome P450s

    Get PDF
    We report initial characterization of a synthetic family of more than 3000 cytochrome P450s made by SCHEMA recombination of 3 bacterial CYP102s. A total of 16 heme domains and their holoenzyme fusions with each of the 3 parental reductase domains were tested for activity on 11 different substrates. The results show that the chimeric enzymes have acquired significant functional diversity, including the ability to accept substrates not accepted by the parent enzymes. K-means clustering analysis of the activity data allowed the enzymes to be classified into five distinct groups based on substrate specificity. The substrates can also be grouped such that one can be a “surrogate” for others in the group. Fusion of a functional chimeric heme domain with a parental reductase domain always reconstituted a functional holoenzyme, indicating that key interdomain interactions are conserved upon reductase swapping

    Enantioselective α-Hydroxylation of 2-Arylacetic Acid Derivatives and Buspirone Catalyzed by Engineered Cytochrome P450 BM-3

    Get PDF
    Here we report that an engineered microbial cytochrome P450 BM-3 (CYP102A subfamily) efficiently catalyzes the α-hydroxylation of phenylacetic acid esters. This P450 BM-3 variant also produces the authentic human metabolite of buspirone, R-6-hydroxybuspirone, with 99.5% ee

    Association of Caldendrin splice isoforms with secretory vesicles in neurohypophyseal axons and the pituitary

    Get PDF
    AbstractCaldendrin is a neuronal calcium-binding protein, which is highly enriched in the postsynaptic density fraction and exhibits a prominent somato-dendritic distribution in brain. Two additional splice variants derive from the caldendrin gene, which have unrelated N-termini and were previously only detected in the retina. We now show that these isoforms are present in neurohypophyseal axons and on secretory granules of endocrine cells. In light of the described interaction of the Caldendrin C-terminus with Q-type Cav2.1 calcium channels these data suggest that this interaction takes place in neurohypophyseal axons and pituitary cells indicating functions of the short splice variants in triggering Ca2+ transients to a vesicular target interaction

    Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus

    Get PDF
    NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-α to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration

    Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations Using Engineered Escherichia coli

    Get PDF
    P450-dependent biotransformations in Escherichia coli are attractive for the selective oxidation of organic molecules using mild and sustainable procedures. The overall efficiency of these processes, however, relies on how effectively the NAD(P)H cofactors derived from oxidation of the carbon source are utilized inside the cell to support the heterologous P450-catalyzed reaction. In this work, we investigate the use of metabolic and protein engineering to enhance the product-per-glucose yield (Y_(PPG)) in wholecell reactions involving a proficient NADPH-dependent P450 propane monooxygenase prepared by directed evolution [P450_(PMO)R2; Fasan et al. (2007); Angew Chem Int Ed 46:8414–8418]. Our studies revealed that the metabolism of E. coli (W3110) is able to support only a modest propanol: glucose molar ratio (Y_(PPG)~0.5) under aerobic, nongrowing conditions. By altering key processes involved in NAD(P)H metabolism of the host, considerable improvements of this ratio could be achieved. A metabolically engineered E. coli strain featuring partial inactivation of the endogenous respiratory chain (Δndh) combined with removal of two fermentation pathways (ΔadhE, Δldh) provided the highest YPPG (1.71) among the strains investigated, enabling a 230% more efficient utilization of the energy source (glucose) in the propane biotransformation compared to the native E. coli strain. Using an engineered P450_(PMO)R2 variant which can utilize NADPH and NADH with equal efficiency, we also established that dual cofactor specificity of the P450 enzyme can provide an appreciable improvement in Y_(PPG). Kinetic analyses suggest, however, that much more favorable parameters (K_M, k_(cat)) for the NADH-driven reaction are required to effectively compete with the host’s endogenous NADH-utilizing enzymes. Overall, the metabolic/protein engineering strategies described here can be of general value for improving the performance of NAD(P)H-dependent whole-cell biotransformations in E. coli
    corecore