3 research outputs found

    MicroRNA-223 coordinates cholesterol homeostasis

    Get PDF
    Results from this study represent a breakthrough in our understanding of posttranscriptional control of cholesterol metabolism and how microRNAs (miRNAs) are at the heart of cholesterol regulatory circuitry and homeostasis. Although cells are adept at maintaining proper cholesterol levels, it was unknown how cells posttranscriptionally coordinate cholesterol uptake, efflux, and synthesis. MicroRNA-223 (miR-223) transcription and expression are maintained by cholesterol, and, as a feedback network, miR-223 inhibits cholesterol biosynthesis and uptake and increases cholesterol efflux. This study clearly demonstrates the extensive role that miRNAs play in coordinating metabolic adaptation to disease and general homeostasis. This work highlights a unique regulatory control point for cholesterol homeostasis and illustrates how important the study of miRNAs is to the greater understanding of dyslipidemia and cardiovascular disease

    MicroRNA-223 coordinates cholesterol homeostasis

    No full text
    MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism
    corecore