11 research outputs found

    Cyclic Nucleotide Phosphodiesterase 3B: Regulation in rat adipocytes and 3T3-L1 cells

    No full text
    Insulin stimulation of rat adipocytes results in phosphorylation and activation of the cyclic nucleotide phosphodiesterase 3B (PDE3B), a key enzyme in the antilipolytic signalling pathway of this hormone. In this thesis, the site phosphorylated in PDE3B upon stimulation of rat adipocytes with insulin and/or the beta-adrenergic agonist, isoproterenol is identified. In addition, upstream components in the insulin-induced signalling pathway, leading to phosphorylation and activation of PDE3B, are reported. Also, long-term regulation of the expression of PDE3B in response to tumour necrosis factor-alpha (TNF-a) and cyclic adenosine monophosphate (cAMP) were investigated in 3T3-L1 adipocytes. Stimulation of rat adipocytes with insulin and/or isoproterenol results in phosphorylation of PDE3B at a unique site, serine302, which is also associated with activation of the enzyme. One important upstream component in the insulin-mediated signalling pathway, resulting in phosphorylation and activation of PDE3B, include phosphatidylinositol-3 kinase (PI3K), although this kinase is not directly responsible for the insulin-stimulated phosphorylation and activation of PDE3B. Insulin-stimulated PI3K-dependent kinases include the serine/threonine protein kinase B (PKB), mitogen-activated protein kinase (MAPK) and p70 ribosomal S6 kinase (p70S6K). While MAPK and p70S6K are not involved in the insulin-induced antilipolytic signalling pathway, leading to phosphorylation and activation of PDE3B, data are presented in this thesis, suggesting that PKB represents a potential PDE3B kinase. Expression of PDE3B can be detected 4 days after initiation of differentiation of 3T3-L1 cells. Treatment of mature 3T3-L1 adipocytes with TNF-a results in downregulation of the expression of PDE3B , which correlates with both activation of protein kinase A (PKA), presumably reflecting an increase in intracellular cAMP concentrations, and with stimulation of lipolysis. Chronically treatment of 3T3-L1 adipocytes with cAMP also produces a reduction in the expression of PDE3B, an effect mediated via PKA. These results suggest that PDE3B is a novel target for long-term regulation by TNF-a and cAMP, which could contribute to the understanding of the underlying mechanisms for insulin resistance

    Methods to study phosphorylation and activation of the hormone-sensitive adipocyte phosphodiesterase type 3B in rat adipocytes

    No full text
    Cyclic nucleotide phosphodiesterases (PDEs) include a large group of structurally related enzymes that are responsible for the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). These enzymes belong to at least nine related gene families (PDEs 1–9) (1–5), which differ in their primary structures, affinities for cAMP and cGMP, responses to specific effectors, sensitivities to specific inhibitors, and regulatory mechanisms. The PDE3 family (6) consists of two subfamilies, PDE3A and PDE3B, which exhibit tissue-specific distribution; grossly, PDE3A enzymes are expressed in the cardiovascular system, and PDE3B enzymes in insulin-sensitive cells, such as hepatocytes (7) and adipocytes (6), and also in pancreatic β-cells (8). One characteristic of PDE3s involves their phosphorylation and activation in response to insulin, as well as to agents that increase cAMP in adipocytes (6), hepatocytes (7), and platelets (9–11), and in response to insulin-like growth factor-1 (IGF-)1 in pancreatic β-cells (8)

    Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein kinase or p70 S6 kinase

    No full text
    Insulin stimulation of adipocytes results in serine phosphorylation/activation of phosphodiesterase 3B (PDE 3B) and activation of a kinase that phosphorylates PDE 3B in vitro, key events in the antilipolytic action of this hormone. We have investigated the role for p70 S6 kinase, mitogen-activated protein kinases (MAP kinases), and protein kinase B (PKB) in the insulin signaling pathway leading to phosphorylation/activation of PDE 3B in adipocytes. Insulin stimulation of adipocytes resulted in increased activity of p70 S6 kinase, which was completely blocked by pretreatment with rapamycin. However, rapamycin had no effect on the insulin-induced phosphorylation/activation of PDE 3B or the activation of the kinase that phosphorylates PDE 3B. Stimulation of adipocytes with insulin or phorbol myristate acetate induced activation of MAP kinases. Pretreatment of adipocytes with the MAP kinase kinase inhibitor PD 98059 was without effect on the insulin-induced activation of PDE 3B. Furthermore, phorbol myristate acetate stimulation did not result in phosphorylation/activation of PDE 3B or activation of the kinase that phosphorylates PDE 3B. Using Mono Q and Superdex chromatography, the kinase that phosphorylates PDE 3B was found to co-elute with PKB, but not with p70 S6 kinase or MAP kinases. Furthermore, both PKB and the kinase that phosphorylates PDE 3B were found to translocate to membranes in response to peroxovanadate stimulation of adipocytes in a wortmannin-sensitive way. Whereas these results suggest that p70 S6 kinase and MAP kinases are not involved in the insulin-induced phosphorylation/activation of PDE 3B in rat adipocytes, they are consistent with PKB being the kinase that phosphorylates PDE 3B

    Phosphorylation and activation of hormone-sensitive adipocyte phosphodiesterase type 3B

    No full text
    Phosphodiesterases (PDEs) include a large group of structurally related enzymes that belong to at least seven related gene families (PDEs 1-7) that differ in their primary structure, affinity for cAMP and cGMP, response to specific effectors, sensitivity to specific inhibitors, and regulatory mechanism. One characteristic of PDE3s involves their phosphorylation and activation in response to insulin as well as to agents that increase cAMP in adipocytes, hepatocytes, and platelets and in response to insulin-like growth factor 1 in pancreatic beta cells. In adipocytes, activation of the membrane-associated PDE3B is the major mechanism whereby insulin antagonizes catecholamine-induced lipolysis. PDE3B activation results in increased degradation of cAMP and, thereby, a lowering of the activity of cAMP-dependent protein kinase (PKA). The reduced activity of PKA leads to a net dephosphorylation and decreased activity of hormone-sensitive lipase and reduced hydrolysis of triglycerides. Activation of the rat adipocyte PDE3B by insulin is associated with phosphorylation of serine-302. The mechanism whereby insulin stimulation leads to phosphorylation/activation of PDE3B is only partly understood. In rat adipocytes, lipolytic hormones and other agents that increase cAMP, including isoproterenol, also induce rapid phosphorylation, presumably catalyzed by PKA, of serine-302 of PDE3B. The phosphorylation is associated with activation of the enzyme, most likely representing "feedback" regulation of cAMP, presumably allowing close coupling of the regulation of steady-state concentrations of both cAMP and PKA and, thereby, control of lipolysis. In the review we describe methods and strategies used in the authors' laboratories to study phosphorylation and activation of PDE3B in adipocytes and in vitro

    C(2)-ceramide influences the expression and insulin-mediated regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 adipocytes.

    No full text
    Cyclic nucleotide phosphodiesterase (PDE) 3B plays an important role in the antilipolytic action of insulin and, thereby, the release of fatty acids from adipocytes. Increased concentrations of circulating fatty acids as a result of elevated or unrestrained lipolysis cause insulin resistance. The lipolytic action of tumor necrosis factor (TNF)-alpha is thought to be one of the mechanisms by which TNF-alpha induces insulin resistance. Ceramide is the suggested second messenger of TNF-alpha action, and in this study, we used 3T3-L1 adipocytes to investigate the effects of C(2)-ceramide (a short-chain ceramide analog) on the expression and regulation of PDE3B and lipolysis. Incubation of adipocytes with 100 micromol/l C(2)-ceramide (N-acetyl-sphingosine) resulted in a time-dependent decrease of PDE3B activity, accompanied by decreased PDE3B protein expression. C(2)-ceramide, in a time- and dose-dependent manner, stimulated lipolysis, an effect that was blocked by H-89, an inhibitor of protein kinase A. These ceramide effects were prevented by 20 micromol/l troglitazone, an antidiabetic drug. In addition to downregulation of PDE3B, the antilipolytic action of insulin was decreased by ceramide treatment. These results, together with data from other studies on PDE3B and lipolysis in diabetic humans and animals, suggest a novel pathway by which ceramide induces insulin resistance. Furthermore, PDE3B is demonstrated to be a target for troglitazone action in adipocytes

    IL-3 and IL-4 activate cyclic nucleotide phosphodiesterases 3 (PDE3) and 4 (PDE4) by different mechanisms in FDCP2 myeloid cells

    No full text
    In FDCP2 myeloid cells, IL-4 activated cyclic nucleotide phosphodiesterases PDE3 and PDE4, whereas IL-3, granulocyte-macrophage CSF (GM-CSF), and phorbol ester (PMA) selectively activated PDE4. IL-4 (not IL-3 or GM-CSF) induced tyrosine phosphorylation of insulin-receptor substrate-2 (IRS-2) and its association with phosphatidylinositol 3-kinase (PI3-K). TNF-alpha, AG-490 (Janus kinase inhibitor), and wortmannin (PI3-K inhibitor) inhibited activation of PDE3 and PDE4 by IL-4. TNF-alpha also blocked IL-4-induced tyrosine phosphorylation of IRS-2, but not of STAT6. AG-490 and wortmannin, not TNF-alpha, inhibited activation of PDE4 by IL-3. These results suggested that IL-4-induced activation of PDE3 and PDE4 was downstream of IRS-2/PI3-K, not STAT6, and that inhibition of tyrosine phosphorylation of IRS molecules might be one mechnism whereby TNF-alpha could selectively regulate activities of cytokines that utilized IRS proteins as signal transducers. RO31-7549 (protein kinase C (PKC) inhibitor) inhibited activation of PDE4 by PMA. IL-4, IL-3, and GM-CSF activated mitogen-activated protein (MAP) kinase and protein kinase B via PI3-K signals; PMA activated only MAP kinase via PKC signals. The MAP kinase kinase (MEK-1) inhibitor PD98059 inhibited IL-4-, IL-3-, and PMA-induced activation of MAP kinase and PDE4, but not IL-4-induced activation of PDE3. In FDCP2 cells transfected with constitutively activated MEK, MAP kinase and PDE4, not PDE3, were activated. Thus, in FDCP2 cells, PDE4 can be activated by overlapping MAP kinase-dependent pathways involving PI3-K (IL-4, IL-3, GM-CSF) or PKC (PMA), but selective activation of PDE3 by IL-4 is MAP kinase independent (but perhaps IRS-2/PI3-K dependent)

    Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells

    No full text
    Wild-type (F/B), constitutively active (F/B*), and three kinase-inactive (F/Ba-, F/Bb-, F/Bc-) forms of Akt/protein kinase B (PKB) were permanently overexpressed in FDCP2 cells. In the absence of insulin-like growth factor-1 (IGF-1), activities of PKB, cyclic nucleotide phosphodiesterase 3B (PDE3B), and PDE4 were similar in nontransfected FDCP2 cells, mock-transfected (F/V) cells, and F/B and F/B- cells. In F/V cells, IGF-1 increased PKB, PDE3B, and PDE4 activities approximately 2-fold. In F/B cells, IGF-1, in a wortmannin-sensitive manner, increased PKB activity approximately 10-fold and PDE3B phosphorylation and activity ( approximately 4-fold), but increased PDE4 to the same extent as in F/V cells. In F/B* cells, in the absence of IGF-1, PKB activity was markedly increased ( approximately 10-fold) and PDE3B was phosphorylated and activated (3- to 4-fold); wortmannin inhibited these effects. In F/B* cells, IGF-1 had little further effect on PKB and activation/phosphorylation of PDE3B. In F/B- cells, IGF-1 activated PDE4, not PDE3B, suggesting that kinase-inactive PKB behaved as a dominant negative with respect to PDE3B activation. Thymidine incorporation was greater in F/B* cells than in F/V cells and was inhibited to a greater extent by PDE3 inhibitors than by rolipram, a PDE4 inhibitor. In F/B cells, IGF-1-induced phosphorylation of the apoptotic protein BAD was inhibited by the PDE3 inhibitor cilostamide. Activated PKB phosphorylated and activated rPDE3B in vitro. These results suggest that PDE3B, not PDE4, is a target of PKB and that activated PDE3B may regulate cAMP pools that modulate effects of PKB on thymidine incorporation and BAD phosphorylation in FDCP2 cells
    corecore