121 research outputs found
Viscosity of the Scalar Fields from the Classical Theory
We show how the resummation for time dependent quantities at high temperature
can be performed with an effective classical theory. As an application we
demonstrate that the leading term in the shear viscosity, which is related to
the spectral function can be calculated classically,
either using classical linear response theory or from the classical
correlation function. The classical result depends explicitly on the cutoff,
and the choice reproduces the known quantum result.Comment: 11 pages, LaTeX, 1 eps figur
Generalized Boltzmann equations for on-shell particle production in a hot plasma
A novel refinement of the conventional treatment of Kadanoff--Baym equations
is suggested. Besides the Boltzmann equation another differential equation is
used for calculating the evolution of the non-equilibrium two-point function.
Although it was usually interpreted as a constraint on the solution of the
Boltzmann equation, we argue that its dynamics is relevant to the determination
and resummation of the particle production cut contributions. The differential
equation for this new contribution is illustrated in the example of the cubic
scalar model. The analogue of the relaxation time approximation is suggested.
It results in the shift of the threshold location and in smearing out of the
non-analytic threshold behaviour of the spectral function. Possible
consequences for the dilepton production are discussed.Comment: 22 pages, latex, 2 ps figure
Real-time propagators at finite temperature and chemical potential
We derive a form of spectral representations for all bosonic and fermionic
propagators in the real-time formulation of field theory at finite temperature
and chemical potential. Besides being simple and symmetrical between the
bosonic and the fermionic types, these representations depend explicitly on
analytic functions only. This last property allows a simple evaluation of loop
integrals in the energy variables over propagators in this form, even in
presence of chemical potentials, which is not possible over their conventional
form
Renormalization in Self-Consistent Approximations schemes at Finite Temperature I: Theory
Within finite temperature field theory, we show that truncated
non-perturbative self-consistent Dyson resummation schemes can be renormalized
with local counter-terms defined at the vacuum level. The requirements are that
the underlying theory is renormalizable and that the self-consistent scheme
follows Baym''s -derivable concept. The scheme generates both, the
renormalized self-consistent equations of motion and the closed equations for
the infinite set of counter terms. At the same time the corresponding
2PI-generating functional and the thermodynamical potential can be
renormalized, in consistency with the equations of motion. This guarantees the
standard -derivable properties like thermodynamic consistency and exact
conservation laws also for the renormalized approximation schemes to hold. The
proof uses the techniques of BPHZ-renormalization to cope with the explicit and
the hidden overlapping vacuum divergences.Comment: 22 Pages 1 figure, uses RevTeX4. The Revision concerns the correction
of some minor typos, a clarification concerning the real-time contour
structure of renormalization parts and some comments concerning symmetries in
the conclusions and outloo
Time evolution in linear response: Boltzmann equations and beyond
In this work a perturbative linear response analysis is performed for the
time evolution of the quasi-conserved charge of a scalar field. One can find
two regimes, one follows exponential damping, where the damping rate is shown
to come from quantum Boltzmann equations. The other regime (coming from
multiparticle cuts and products of them) decays as power law. The most
important, non-oscillating contribution in our model comes from a 4-particle
intermediate state and decays as 1/t^3. These results may have relevance for
instance in the context of lepton number violation in the Early Universe.Comment: 19 page
Particle Currents in a Space-Time dependent and CP-violating Higgs Background: a Field Theory Approach
Motivated by cosmological applications like electroweak baryogenesis, we
develop a field theoretic approach to the computation of particle currents on a
space-time dependent and CP-violating Higgs background. We consider the
Standard Model model with two Higgs doublets and CP violation in the scalar
sector, and compute both fermionic and Higgs currents by means of an expansion
in the background fields. We discuss the gauge dependence of the results and
the renormalization of the current operators, showing that in the limit of
local equilibrium, no extra renormalization conditions are needed in order to
specify the system completely.Comment: 21 pages, LaTeX file, uses epsf.sty. 4 figures available as a
compressed .ep
Nonequilibrium perturbation theory for complex scalar fields
Real-time perturbation theory is formulated for complex scalar fields away
from thermal equilibrium in such a way that dissipative effects arising from
the absorptive parts of loop diagrams are approximately resummed into the
unperturbed propagators. Low order calculations of physical quantities then
involve quasiparticle occupation numbers which evolve with the changing state
of the field system, in contrast to standard perturbation theory, where these
occupation numbers are frozen at their initial values. The evolution equation
of the occupation numbers can be cast approximately in the form of a Boltzmann
equation. Particular attention is given to the effects of a non-zero chemical
potential, and it is found that the thermal masses and decay widths of
quasiparticle modes are different for particles and antiparticles.Comment: 15 pages using RevTeX; 2 figures in 1 Postscript file; Submitted to
Phys. Rev.
Nucleon propagation through nuclear matter in chiral effective field theory
We treat the propagation of nucleon in nuclear matter by evaluating the
ensemble average of the two-point function of nucleon currents in the framework
of the chiral effective field theory. We first derive the effective parameters
of nucleon to one loop. The resulting formula for the effective mass was known
previously and gives an absurd value at normal nuclear density. We then modify
it following Weinberg's method for the two-nucleon system in the effective
theory. Our results for the effective mass and the width of nucleon are
compared with those in the literature.Comment: 11 pages including 4 figures. To appear in Eur. J. Phys.
Transurethral injection of autologous muscle precursor cells for treatment of female stress urinary incontinence: a prospective phase I clinical trial
INTRODUCTION AND HYPOTHESIS
The purpose was to investigate the safety and feasibility of transurethral injections of autologous muscle precursor cells (MPCs) into the external urinary sphincter (EUS) to treat stress urinary incontinence (SUI) in female patients.
METHODS
Prospective and randomised phase I clinical trial. Standardised 1-h pad test, International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form (ICIQ-UI-SF), urodynamic study, and MRI of the pelvis were performed at baseline and 6 months after treatment. MPCs gained through open muscle biopsy were transported to a GMP facility for processing and cell expansion. The final product was injected into the EUS via a transurethral ultrasound-guided route. Primary outcomes were defined as any adverse events (AEs) during follow-up. Secondary outcomes were functional, questionnaire, and radiological results.
RESULTS
Ten female patients with SUI grades I-II were included in the study and 9 received treatment. Out of 8 AEs, 3 (37.5%) were potentially related to treatment and treated conservatively: 1 urinary tract infection healed with antibiotics treatment, 1 dysuria and 1 discomfort at biopsy site. Functional urethral length under stress was 25 mm at baseline compared with 30 mm at 6 months' follow-up (p=0.009). ICIQ-UI-SF scores improved from 7 points at baseline to 4 points at follow-up (p=0.035). MRI of the pelvis revealed no evidence of tumour or necrosis, whereas the diameter of the EUS muscle increased from 1.8 mm at baseline to 1.9 mm at follow-up (p=0.009).
CONCLUSION
Transurethral injections of autologous MPCs into the EUS for treatment of SUI in female patients can be regarded as safe and feasible. Only a minimal number of expected and easily treatable AEs were documented
Perturbative nonequilibrium dynamics of phase transitions in an expanding universe
A complete set of Feynman rules is derived, which permits a perturbative
description of the nonequilibrium dynamics of a symmetry-breaking phase
transition in theory in an expanding universe. In contrast to a
naive expansion in powers of the coupling constant, this approximation scheme
provides for (a) a description of the nonequilibrium state in terms of its own
finite-width quasiparticle excitations, thus correctly incorporating
dissipative effects in low-order calculations, and (b) the emergence from a
symmetric initial state of a final state exhibiting the properties of
spontaneous symmetry breaking, while maintaining the constraint . Earlier work on dissipative perturbation theory and spontaneous symmetry
breaking in Minkowski spacetime is reviewed. The central problem addressed is
the construction of a perturbative approximation scheme which treats the
initial symmetric state in terms of the field , while the state that
emerges at later times is treated in terms of a field , linearly related
to . The connection between early and late times involves an infinite
sequence of composite propagators. Explicit one-loop calculations are given of
the gap equations that determine quasiparticle masses and of the equation of
motion for and the renormalization of these equations is
described. The perturbation series needed to describe the symmetric and
broken-symmetry states are not equivalent, and this leads to ambiguities
intrinsic to any perturbative approach. These ambiguities are discussed in
detail and a systematic procedure for matching the two approximations is
described.Comment: 22 pages, using RevTeX. 6 figures. Submitted to Physical Review
- …