2,059 research outputs found

    Theory for all-optical responses in topological materials: The velocity gauge picture

    Get PDF
    High-order harmonic generation (HHG), which has been widely studied in atomic gas, has recently been expanded to solids to study the highly nonlinear electronic response in condensed matter and produce coherent high-frequency radiation. Recently, attention has turned to topological materials and the use of HHG to characterize topological bands and invariants. However, the theoretical interpretation of the nonlinear electronic response in topological materials presents many challenges. In particular, the Bloch wavefunction phase of topological materials has undefined points in the Brillouin zone. This leads to singularities in the calculation of the interband and intraband transition dipole matrix elements of the semiconductor Bloch equations (SBEs). Here, we use the laser-electromagnetic velocity gauge p⋅A(t) to numerically integrate the SBEs and treat the singularity in the production of the electrical currents and HHG spectra with better numerical efficiency and more straightforward implementation. We used a prototype of Chern insulators (CIs), the Haldane model, to demonstrate our approach. The validity of the velocity gauge approach is demonstrated in the following way: for topologically trivial materials such as MoS2, qualitative agreement is achieved with the results of the length gauge approach and the time-dependent density functional theory. For the application of the velocity gauge approach to topological materials, Chern insulator is taken, using the two-band Haldane model. We found a good qualitative agreement between the velocity gauge and the length gauge approach in view of (i) the selection rules, (ii) the linear cutoff law scaling, and (iii) anomalous circular dichroism. We conclude that the velocity-gauge approach for HHG provides a theoretical tool to investigate topological materials

    Complete chaotic synchronization in mutually coupled time-delay systems

    Full text link
    Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of the parameters. The results explain and predict the dependence of synchronization on various parameters, such as time-delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized sub-systems.Comment: 22 pages, 6 figure

    Group averaging in the (p,q) oscillator representation of SL(2,R)

    Full text link
    We investigate refined algebraic quantisation with group averaging in a finite-dimensional constrained Hamiltonian system that provides a simplified model of general relativity. The classical theory has gauge group SL(2,R) and a distinguished o(p,q) observable algebra. The gauge group of the quantum theory is the double cover of SL(2,R), and its representation on the auxiliary Hilbert space is isomorphic to the (p,q) oscillator representation. When p>1, q>1 and p+q == 0 (mod 2), we obtain a physical Hilbert space with a nontrivial representation of the o(p,q) quantum observable algebra. For p=q=1, the system provides the first example known to us where group averaging converges to an indefinite sesquilinear form.Comment: 34 pages. LaTeX with amsfonts, amsmath, amssymb. (References added; minor typos corrected.

    Hot Populations in M87 Globular Clusters

    Get PDF
    We have obtained HST/STIS far- and near-UV photometry of globular clusters in four fields in the gE galaxy M87. To a limit of m(FUV) = 25 we detect a total of 66 globular clusters (GCs) in common with the deep HST optical-band study of Kundu et al. (1999). Despite strong overlap in V- and I-band properties, the M87 GCs have UV/optical properties that are distinct from clusters in the Milky Way and in M31. M87 clusters, especially metal-poor ones, produce larger hot HB populations than do Milky Way analogues. Cluster mass is probably not a factor in these distinctions. The most metal-rich M87 GCs in our sample are near Z_sun and overlap the local E galaxy sample in estimated Mg_2 line indices. Nonetheless, the clusters produce much more UV light at a given Mg_2, being up to 1 mag bluer than any gE galaxy in (FUV-V) color. The M87 GCs do not appear to represent a transition between Milky Way-type clusters and E galaxies. The differences are in the correct sense if the clusters are significantly older than the E galaxies. Comparisons with Galactic open clusters indicate that the hot stars lie on the extreme horizontal branch, rather than being blue stragglers, and that the EHB becomes well populated for ages > 5 Gyr. We find that 43 of our UV detections have no optical-band counterparts. Most appear to be UV-bright background galaxies, seen through M87. Eleven NUV variable sources detected at only one epoch in the central field are probably classical novae. [Abridged]Comment: 70 pages, 25 figures (including 4 jpgs), 7 tables. To appear in AJ. Full resolution version available at http://www.astro.virginia.edu/~rwo/m87/m87-hotpops.pd

    PCN51 Health Care Resources and Costs Across Lines of Therapies in Insured Patients with Metastatic Breast Cancer in the United States

    Get PDF

    Triboelectric Backgrounds to radio-based UHE Neutrino Exeperiments

    Full text link
    The triboelectric effect broadly includes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the generation of an electrostatic potential. Wind blowing over granular surfaces, such as snow, can induce a potential difference, with subsequent coronal discharge. Nanosecond timescale discharges can lead to radio-frequency emissions with characteristics similar to piezoelectric-induced discharges. For Antarctic-sited experiments seeking detection of radio-frequency signals generated by collisions of cosmic rays or neutrinos with atmospheric or englacial molecular targets, triboelectric emissions from the surface pose a potential background. This is particularly true for experiments in which radio antennas are buried ~(1--100) m below the snow surface, and seeking to validate neutrino detection strategies by measurement of down-coming radio-frequency emissions from extensive air showers. Herein, after summarizing extant evidence for wind-induced triboelectric effects previously reported elsewhere, we detail additional analysis using archival data collected with the RICE and AURA experiments at the South Pole. We broadly characterize those radio-frequency emissions based on source location, and time-domain and also frequency-domain characteristics. We find that: a) For wind velocities in excess of 10-12 m/s, triboelectric background triggers can dominate data-taking, b) frequency spectra for triboelectric events are generally shifted to the low-end of the regime to which current radio experiments are typically sensitive (100-200 MHz), c) there is an apparent preference for tribo-electric discharges from metal surface structures, consistent with a model in which localized, above-surface structures provide a repository for transported charge
    corecore