967 research outputs found

    Uptake of heavy metals, organic trace contaminants and viruses by the Japanese oyster, Crassostrea gigas, grown in a waste recycling aquaculture system : final report

    Get PDF
    A study of 24 weeks duration was carried out in which oysters (Crassostrea gigas) were grown in four regimes. These were: (i) on phytoplankton cultured in a mixture of secondary treated sewage effluent and seawater for a period of 12 weeks followed by a second 12 week period of feeding on phytoplankton cultured in a "clean," inorganically enriched regime; (ii) as for (i) except that the secondary effluent was sand filtered prior to use; (iii) as for (ii) except that the effluent was charcoal filtered prior to use; and (iv) using "clean," inorganically enriched phytoplankton food for the 24 week duration. At intervals of two weeks, populations of oysters were removed for assay for trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) and organic contaminants (hydrocarbons, P . C.B.' s). No significant accumulation or depuration of any metal or organic contaminant was evident in any of the regimes. In terms of these contaminants all oysters are within acceptable edible standards as set by F.D.A. A series of experiments was carried out to examine the public health implications of enterovirus survival in a mollusc culture system fertilized with secondary treated sewage effluent. Using MS-2 bacteriophage and vaccine strain poliovirus it would appear that depuration could be effected in 20-25 days in C. gigas at l5°C. However this does NOT mean that such a time span would be adequate for other enteroviruses. Further work is required in this area.Supported by NOAA Office of Sea Grant, Department of Commerce, Grant No. 04-07-158-44104

    Fate of human viruses in groundwater recharge systems

    Get PDF
    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text

    Data report. The fate of human enteric viruses in a natural sewage recycling system

    Get PDF
    A two-year study was conducted to determine the virus-removing capacity of two man-made ecosystems designed for the treatment of raw domestic wastewater. The first treatment system consisted of two meadows followed by a marsh-pond unit (M/M/P). The second system contained individual marsh and pond units (M/P). All systems demonstrated moderate virus removal, with the marsh/pond system yielding the most consistent removal rates. Within this system, the greater potential for virus removal appeared to occur in the marsh unit. In addition to the production of system-oriented data, improved techniques for the concentration and enumeration of human viruses from sewage-polluted aquatic systems were developed

    Plug flow and the breakdown of Bagnold scaling in cohesive granular flows

    Full text link
    Cohesive granular media flowing down an inclined plane are studied by discrete element simulations. Previous work on cohesionless granular media demonstrated that within the steady flow regime where gravitational energy is balanced by dissipation arising from intergrain forces, the velocity profile in the flow direction scales with depth in a manner consistent with the predictions of Bagnold. Here we demonstrate that this Bagnold scaling does not hold for the analogous steady-flows in cohesive granular media. We develop a generalization of the Bagnold constitutive relation to account for our observation and speculate as to the underlying physical mechanisms responsible for the different constitutive laws for cohesive and noncohesive granular media.Comment: 8 pages, 10 figure

    Choice of autogenous conduit for lower extremity vein graft revisions

    Get PDF
    AbstractBackground: Surgical revision to repair stenosis is necessary in about 20% of lower extremity vein grafts (LEVGs). Alternate conduit, especially arm vein, is often necessary to achieve a policy of all-autogenous revisions. Although basilic vein harvest necessitates deep exposure in proximity to major nerves, it typically uses a large vein unaffected by prior intravenous lines and as such appears ideally suited for revisions in which a segmental interposition conduit is needed for revision within the graft or for extension to a more proximal inflow or distal outflow site. In this report, we describe our experience with the use of the basilic vein for LEVG revisions compared with other sources of autogenous conduit. Methods: All patients who underwent LEVG were placed in a duplex scan surveillance program. LEVGs that developed a focal area of increased velocity or uniformly low velocities throughout the graft with appropriate lesions confirmed with angiography were candidates for revision. All patients who underwent graft revision with basilic vein segments from January 1, 1990, to September 1, 2001, were identified, and their courses were reviewed for subsequent adverse events (further revision or occlusion) and complications of harvest. These revisions were compared with revisions in which cephalic and saphenous vein were used. Results: One hundred thirty basilic veins were used to revise 122 LEVGs. The mean follow-up period after revision was 28 ± 27 months. Ninety-three grafts (71%) remained patent with no further revision, and 37 grafts (29%) either needed additional revisions (22 grafts) or were occluded (15 grafts). Only four of these adverse events (11%) were directly attributed to the basilic vein segment. Ten of 43 grafts revised with cephalic vein (23%) were either revised or occluded, of which three were related to the cephalic vein segment (P = not significant, compared with basilic vein). Twenty-four of 81 grafts revised with saphenous vein (30%) were either revised or occluded, of which 11 were attributed to the saphenous vein segment (P < .01, compared with basilic vein). Two patients (1.5%) had complications from basilic vein harvest (one hematoma, one arterial injury). No neurologic injuries resulted from basilic vein harvest. Conclusion: The basilic vein is a reliable and durable conduit when used to segmentally revise LEVGs. Stenoses rarely occur within interposed basilic vein segments, and excellent freedom from subsequent revision or occlusion is possible. We conclude the basilic vein can be safely harvested with minimal complications and is ideally suited for use as a short segment interposition graft for LEVG revision. (J Vasc Surg 2002;36:238-44.

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    Relationships between physiological characteristics and trace metal body burdens of banded garden spiders Argiope trifasciata (Araneae, Araneidae)

    Get PDF
    Banded garden spiders (Argiope trifasciata) were collected at the Ballona Wetlands, a metal contaminated salt marsh. The relationship between spider body size and individual metal loads was investigated. Biochemical markers were identified in spider fecal material and found to correlate to body metal levels. Body metal dry weight concentrations of Cd, Cr, Cu, Zn and total metals in female A. trifasciata exhibited distinct patterns of spatial and annual variation during 2006 and 2007. Spider body size was homogeneous across sites in both years, while increased Cd and Cr concentrations were sometimes associated with a reduction in spider size, though the influence of Cr was quite minor. Spiders with higher body Cu levels showed a reduction in peak area for hypoxanthine and an un-identified component in fecal material chromatograms. Spatial and annual differences in metal bioaccumulation are likely mediated by variation in site-specific environmental parameters and rainfall, while the negative relationships between body size and metal levels are presumably a consequence of a spider\u27s expenditure of energy for metal tolerance mechanisms vs. foraging and growth. Finally, correlating body metal levels with excreta products constitutes a novel method to non-invasively predict metal levels in spiders

    Granular flow down a rough inclined plane: transition between thin and thick piles

    Full text link
    The rheology of granular particles in an inclined plane geometry is studied using molecular dynamics simulations. The flow--no-flow boundary is determined for piles of varying heights over a range of inclination angles θ\theta. Three angles determine the phase diagram: θr\theta_{r}, the angle of repose, is the angle at which a flowing system comes to rest; θm\theta_{m}, the maximum angle of stability, is the inclination required to induce flow in a static system; and θmax\theta_{max} is the maximum angle for which stable, steady state flow is observed. In the stable flow region θr<θ<θmax\theta_{r}<\theta<\theta_{max}, three flow regimes can be distinguished that depend on how close θ\theta is to θr\theta_{r}: i) θ>>θr\theta>>\theta_{r}: Bagnold rheology, characterized by a mean particle velocity vxv_{x} in the direction of flow that scales as vxh3/2v_{x}\propto h^{3/2}, for a pile of height hh, ii) θθr\theta\gtrsim\theta_{r}: the slow flow regime, characterized by a linear velocity profile with depth, and iii) θθr\theta\approx\theta_{r}: avalanche flow characterized by a slow underlying creep motion combined with occasional free surface events and large energy fluctuations. We also probe the physics of the initiation and cessation of flow. The results are compared to several recent experimental studies on chute flows and suggest that differences between measured velocity profiles in these experiments may simply be a consequence of how far the system is from jamming.Comment: 19 pages, 14 figs, submitted to Physics of Fluid
    corecore