28 research outputs found

    Atomic-scale structure of the SrTiO3(001)-c(6x2) reconstruction: Experiments and first-principles calculations

    Get PDF
    The c(6x2) is a reconstruction of the SrTiO3(001) surface that is formed between 1050-1100oC in oxidizing annealing conditions. This work proposes a model for the atomic structure for the c(6x2) obtained through a combination of results from transmission electron diffraction, surface x-ray diffraction, direct methods analysis, computational combinational screening, and density functional theory. As it is formed at high temperatures, the surface is complex and can be described as a short-range ordered phase featuring microscopic domains composed of four main structural motifs. Additionally, non-periodic TiO2 units are present on the surface. Simulated scanning tunneling microscopy images based on the electronic structure calculations are consistent with experimental images

    Functional Organization of Single and Paired V(D)J Cleavage Complexes

    No full text
    RAG-1 and RAG-2 initiate V(D)J recombination by binding to specific recognition sequences (RSS) and then cleave the DNA in two steps: nicking and hairpin formation. Recent work has established that a dimer of RAG-1 and either one or two monomers of RAG-2 bind to a single RSS, but the enzymatic contributions of the RAG molecules within this nucleoprotein complex and its functional organization have not been elucidated. Using heterodimeric protein preparations containing both wild-type and catalytically deficient RAG-1 molecules, we found that one active monomer is sufficient for both nicking and hairpin formation at a single RSS, demonstrating that a single active site can carry out both cleavage steps. Furthermore, the mutant heterodimers efficiently cleaved both RSS in a synaptic complex. These results strongly suggest that two RAG-1 dimers are responsible for RSS cleavage in a synaptic complex, with one monomer of each dimer catalyzing both nicking and hairpin formation at each RSS
    corecore