636 research outputs found

    Quantum Kalb-Ramond Field in D-dimensional de Sitter Spacetimes

    Full text link
    In this work we investigate the quantum theory of the Kalb-Ramond fields propagating in D−D-dimensional de Sitter spacetimes using the dynamic invariant method developed by Lewis and Riesenfeld [J. Math. Phys. 10, 1458 (1969)] to obtain the solution of the time-dependent Schr\"odinger equation. The wave function is written in terms of a c−c-number quantity satisfying of the Milne-Pinney equation, whose solution can be expressed in terms of two independent solutions of the respective equation of motion. We obtain the exact solution for the quantum Kalb-Ramond field in the de Sitter background and discuss its relation with the Cremmer-Scherk-Kalb-Ramond model

    A note on black hole entropy, area spectrum, and evaporation

    Full text link
    We argue that a process where a fuzzy space splits in two others can be used to explain the origin of the black hole entropy, and why a "generalized second law of thermodynamics" appears to hold in the presence of black holes. We reach the Bekenstein-Hawking formula from the count of the microstates of a black hole modeled by a fuzzy space. In this approach, a discrete area spectrum for the black hole, which becomes increasingly spaced as the black hole approaches the Planck scale, is obtained. We show that, as a consequence of this, the black hole radiation becomes less and less entropic as the black hole evaporates, in a way that some information about its initial state could be recovered.Comment: 4 pages, 2 figure

    Duality and fields redefinition in three dimensions

    Full text link
    We analyze local fields redefinition and duality for gauge field theories in three dimensions. We find that both Maxwell-Chern-Simons and the Self-Dual models admits the same fields redefinition. Maxwell-Proca action and its dual also share this property. We show explicitly that a gauge-fixing term has no influence on duality and fields redefinition.Comment: 8 pages, suppressed contents. To appear in J. Phys.

    Spinors Fields in Co-dimension One Braneworlds

    Full text link
    In this work we analyze the zero mode localization and resonances of 1/2−1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension DD we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η1\eta_1, (ii) a Yukawa-dilaton coupling with two parameters η2\eta_2 and λ\lambda and (iii) a dilaton derivative coupling with parameter hh. Together with the deformation parameter ss, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of DD, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of DD induces a shift in the peaks of resonances. For a given λ\lambda with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D=5D=5 do not induces resonances but when we consider D=10D=10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.Comment: 28 pages, 7 figure
    • …
    corecore