38 research outputs found

    In-situ Tuning of the Electric Dipole Strength of a Double Dot Charge Qubit: Charge Noise Protection and Ultra Strong Coupling

    Full text link
    Semiconductor quantum dots, where electrons or holes are isolated via electrostatic potentials generated by surface gates, are promising building blocks for semiconductor-based quantum technology. Here, we investigate double quantum dot (DQD) charge qubits in GaAs, capacitively coupled to high-impedance SQUID array and Josephson junction array resonators. We tune the strength of the electric dipole interaction between the qubit and the resonator in-situ using surface gates. We characterize the qubit-resonator coupling strength, qubit decoherence, and detuning noise affecting the charge qubit for different electrostatic DQD configurations. We find that all quantities can be tuned systematically over more than one order of magnitude, resulting in reproducible decoherence rates Γ2/2π< 5\Gamma_2/2\pi<~5 MHz in the limit of high interdot capacitance. Conversely, by reducing the interdot capacitance, we can increase the DQD electric dipole strength, and therefore its coupling to the resonator. By employing a Josephson junction array resonator with an impedance of ∼4\sim4 kΩ\Omega and a resonance frequency of ωr/2π∼5.6\omega_r/2\pi \sim 5.6 GHz, we observe a coupling strength of g/2π∼630g/2\pi \sim 630 MHz, demonstrating the possibility to achieve the ultrastrong coupling regime (USC) for electrons hosted in a semiconductor DQD. These results are essential for further increasing the coherence of quantum dot based qubits and investigating USC physics in semiconducting QDs.Comment: 24 pages, 13 figure

    Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen

    Full text link
    We report on a low-noise diode laser oscillator at 972 nm actively stabilized to an ultra-stable vibrationally- and thermally compensated reference cavity. To increase the fraction of laser power in the carrier we designed a 20 cm long external cavity diode laser with an intra-cavity electro-optical modulator. The fractional power in the carrier reaches 99.9% which corresponds to a rms phase noise of ϕrms2=1 mrad2\phi^2_\textrm{rms}=1\,\textrm{mrad}^2 in 10\,MHz bandwidth. Using this oscillator we recorded 1S-2S spectra in atomic hydrogen and have not observed any significant loss of the excitation efficiency due to phase noise multiplication in the three consecutive 2-photon processes.Comment: 3 pages, 5 figure

    Microwave-Cavity-Detected Spin Blockade in a Few-Electron Double Quantum Dot

    Full text link
    We investigate spin states of few electrons in a double quantum dot by coupling them to a magnetic field resilient NbTiN microwave resonator. The electric field of the resonator couples to the electric dipole moment of the charge states in the double dot. For a two-electron state the spin-triplet state has a vanishing electric dipole moment and can therefore be distinguished from the spin-singlet state. This way the charge dipole sensitivity of the resonator response is converted to a spin selectivity. We thereby investigate Pauli spin blockade known from transport experiments at finite source-drain bias. In addition we find an unconventional spin-blockade triggered by the absorption of resonator photons

    Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems

    Get PDF
    By making use of a recently proposed framework for the inference of thermodynamic irreversibility in bosonic quantum systems, we experimentally measure and characterize the entropy production rates in the non-equilibrium steady state of two different physical systems -- a micro-mechanical resonator and a Bose-Einstein condensate -- each coupled to a high finesse cavity and hence also subject to optical loss. Key features of our setups, such as cooling of the mechanical resonator and signatures of a structural quantum phase transition in the condensate are reflected in the entropy production rates. Our work demonstrates the possibility to explore irreversibility in driven mesoscopic quantum systems and paves the way to a systematic experimental assessment of entropy production beyond the microscopic limit

    Coherent spin–photon coupling using a resonant exchange qubit

    Full text link
    Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit–photon coupling strength on the tunable electric dipole moment of the qubit using the ‘AC Stark’ effect. Our demonstration of strong qubit–photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits
    corecore