306 research outputs found

    Scaling relations for magnetic nanoparticles

    Full text link
    A detailed investigation of the scaling relations recently proposed by [J. d'Albuquerque e Castro, D. Altbir, J. C. Retamal, and P. Vargas, Phys. Rev. Lett. 88, 237202 (2002)] to study the magnetic properties of nanoparticles is presented. Analytical expressions for the total energy of three characteristic internal configurations of the particles are obtained, in terms of which the behavior of the magnetic phase diagram for those particles upon scaling of the exchange interaction is discussed. The exponent η\eta in scaling relations is shown to be dependent on the geometry of the vortex core, and results for specific cases are presented.Comment: 6 pages, 4 figure

    Vortex core size in interacting cylindrical nanodot arrays

    Full text link
    The effect of dipolar interactions among cylindrical nanodots, with a vortex-core magnetic configuration, is analyzed by means of analytical calculations. The cylinders are placed in a N x N square array in two configurations - core oriented parallel to each other and with antiparallel alignment between nearest neighbors. Results comprise the variation in the core radius with the number of interacting dots, the distance between them and dot height. The dipolar interdot coupling leads to a decrease (increase) of the core radius for parallel (antiparallel) arrays

    Magnetic behavior of nanoparticles in patterned thin films

    Full text link
    The magnetic behavior of truncated conical nanoparticles in patterned thin films is investigated as a function of their size and shape. Using a scaling technique, phase diagrams giving the relative stability of characteristic internal magnetic structures of the particles are obtained. The role of the uniaxial anisotropy in determining the magnetic properties of such systems is discussed, and a simple method for stablishing its strength is proposed.Comment: 4 pages, 4 figure
    • …
    corecore