2,783 research outputs found

    Non-linear effects in the cyclotron resonance of a massless quasi-particle in graphene

    Full text link
    We consider the classical motion of a massless quasi-particle in a magnetic field and under a weak electromagnetic radiation with the frequency ω\omega. Due to the non-parabolic, linear energy dispersion, the particle responds not only at the frequency ω\omega but generates a broad frequency spectrum around it. The linewidth of the cyclotron resonance turns out to be very broad even in a perfectly pure material which allows one to explain recent experimental data in graphene. It is concluded that the linear response theory does not work in graphene in finite magnetic fields.Comment: 5 pages, 4 figure

    Technology as an economic catalyst in rural and depressed places in Massachusetts

    Get PDF
    This paper uses case studies, including two cities (Lynn and New Bedford), a sub-city district (Roxbury) and two towns in rural Franklin County (Greenfield and Orange), to examine the role of technology as a potential economic catalyst in rural and depressed places in Massachusetts. Though the five target areas vary in size, density, geographic area, demographic characteristics and economic resources, each exhibits chronic patterns of economic distress related to the decline of manufacturing, construction and other key industries

    Studying freeze-out and hadronization in the Landau hydrodynamical model

    Full text link
    We study the rapidity spectra in ultra-relativistic heavy ion collisions in the framework of the Landau hydrodynamical model. We find that thermal smearing effects improve the agreement with experimental results on pion rapidity spectra. We describe a simple model of the hadronization and discuss its consequences regarding the pion multiplicity and the increasing entropy condition.Comment: 7 pages, 3 figure

    On an exact hydrodynamic solution for the elliptic flow

    Full text link
    Looking for the underlying hydrodynamic mechanisms determining the elliptic flow we show that for an expanding relativistic perfect fluid the transverse flow may derive from a solvable hydrodynamic potential, if the entropy is transversally conserved and the corresponding expansion "quasi-stationary", that is mainly governed by the temperature cooling. Exact solutions for the velocity flow coefficients v2v_2 and the temperature dependence of the spatial and momentum anisotropy are obtained and shown to be in agreement with the elliptic flow features of heavy-ion collisions.Comment: 10 pages, 4 figure

    A classification of 2D fermionic and bosonic topological orders

    Get PDF
    The string-net approach by Levin and Wen, and the local unitary transformation approach by Chen, Gu, and Wen, provide ways to classify topological orders with gappable edge in 2D bosonic systems. The two approaches reveal that the mathematical framework for 2+1D bosonic topological order with gappable edge is closely related to unitary fusion category theory. In this paper, we generalize these systematic descriptions of topological orders to 2D fermion systems. We find a classification of 2+1D fermionic topological orders with gappable edge in terms of the following set of data (Nkij,Fkij,Fjkn,χδijm,αβ,di)(N^{ij}_k, F^{ij}_k, F^{ijm,\alpha\beta}_{jkn,\chi\delta},d_i), that satisfy a set of non-linear algebraic equations. The exactly soluble Hamiltonians can be constructed from the above data on any lattices to realize the corresponding topological orders. When Fkij=0F^{ij}_k=0, our result recovers the previous classification of 2+1D bosonic topological orders with gappable edge.Comment: 19 page 5 figures, RevTeX

    Fast magnetization switching of Stoner particles: A nonlinear dynamics picture

    Full text link
    The magnetization reversal of Stoner particles is investigated from the point of view of nonlinear dynamics within the Landau-Lifshitz-Gilbert formulation. The following results are obtained. 1) We clarify that the so-called Stoner-Wohlfarth (SW) limit becomes exact when damping constant is infinitely large. Under the limit, the magnetization moves along the steepest energy descent path. The minimal switching field is the one at which there is only one stable fixed point in the system. 2) For a given magnetic anisotropy, there is a critical value for the damping constant, above which the minimal switching field is the same as that of the SW-limit. 3) We illustrate how fixed points and their basins change under a field along different directions. This change explains well why a non-parallel field gives a smaller minimal switching field and a short switching time. 4) The field of a ballistic magnetization reversal should be along certain direction window in the presence of energy dissipation. The width of the window depends on both of the damping constant and the magnetic anisotropy. The upper and lower bounds of the direction window increase with the damping constant. The window width oscillates with the damping constant for a given magnetic anisotropy. It is zero for both zero and infinite damping. Thus, the perpendicular field configuration widely employed in the current experiments is not the best one since the damping constant in a real system is far from zero.Comment: 10 pages, 9 figures. submitted to PR

    Two-body effects in the decay rate of atomic levels

    Get PDF
    Recoil corrections to the atomic decay rate are considered in the order of Zm/M . The expressions are treated exactly without any expansion over Z alpha. The expressions obtained are valid both for muonic atoms (for which they contribute on the level of a few percent in high Z ions) and for electronic atoms. Explicit results for Lyman-alpha transitions for low-Z of the order (Zm/M)(Z alpha)^2 are also presented.Comment: 5 pages, 1 table, email: [email protected]

    Relativistic diffusive motion in random electromagnetic fields

    Full text link
    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature \beta^{-1}=mc^{2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).Comment: the version published in JP

    Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV

    Full text link
    The near-side ridge structure in the (Delta phi)-(Delta eta) correlation observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be explained by the momentum kick model in which the ridge particles are medium partons that suffer a collision with the jet and acquire a momentum kick along the jet direction. Similar to the early medium parton momentum distribution obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the early medium parton momentum distribution in pp collisions at 7 TeV exhibits a rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at the LHC, Palaiseau, May 30-June2, 201

    Multi-Atomic Mirror for Perfect Reflection of Single Photons in A Wide Band of Frequency

    Full text link
    A resonant two level atom doped in one dimensional waveguide behaves as a mirror, but this single-atom "mirror" can only reflect single photon perfectly at a specific frequency. For a one dimensional coupled-resonator waveguide, we propose to extend the perfect reflection region from a specific frequency to a wide band by placing many atoms individually in the resonators in a finite coordinate region of the waveguide. Such a doped resonator array promises us to control the propagation of a practical photon wave packet with certain momentum distribution instead of a single photon, which is ideally represented by a plane wave with specific momentum. The studies based on the discrete-coordinate scattering theory display that such hybrid structure indeed provides a near-perfect reflection for single photon in a wide band. We also calculated photon group velocity distribution, which shows that the perfect reflection with wide band exactly corresponds to the stopping light region.Comment: 8 pages, 10 figure
    • …
    corecore