2,783 research outputs found
Non-linear effects in the cyclotron resonance of a massless quasi-particle in graphene
We consider the classical motion of a massless quasi-particle in a magnetic
field and under a weak electromagnetic radiation with the frequency .
Due to the non-parabolic, linear energy dispersion, the particle responds not
only at the frequency but generates a broad frequency spectrum around
it. The linewidth of the cyclotron resonance turns out to be very broad even in
a perfectly pure material which allows one to explain recent experimental data
in graphene. It is concluded that the linear response theory does not work in
graphene in finite magnetic fields.Comment: 5 pages, 4 figure
Technology as an economic catalyst in rural and depressed places in Massachusetts
This paper uses case studies, including two cities (Lynn and New Bedford), a sub-city district (Roxbury) and two towns in rural Franklin County (Greenfield and Orange), to examine the role of technology as a potential economic catalyst in rural and depressed places in Massachusetts. Though the five target areas vary in size, density, geographic area, demographic characteristics and economic resources, each exhibits chronic patterns of economic distress related to the decline of manufacturing, construction and other key industries
Studying freeze-out and hadronization in the Landau hydrodynamical model
We study the rapidity spectra in ultra-relativistic heavy ion collisions in
the framework of the Landau hydrodynamical model. We find that thermal smearing
effects improve the agreement with experimental results on pion rapidity
spectra. We describe a simple model of the hadronization and discuss its
consequences regarding the pion multiplicity and the increasing entropy
condition.Comment: 7 pages, 3 figure
On an exact hydrodynamic solution for the elliptic flow
Looking for the underlying hydrodynamic mechanisms determining the elliptic
flow we show that for an expanding relativistic perfect fluid the transverse
flow may derive from a solvable hydrodynamic potential, if the entropy is
transversally conserved and the corresponding expansion "quasi-stationary",
that is mainly governed by the temperature cooling. Exact solutions for the
velocity flow coefficients and the temperature dependence of the spatial
and momentum anisotropy are obtained and shown to be in agreement with the
elliptic flow features of heavy-ion collisions.Comment: 10 pages, 4 figure
A classification of 2D fermionic and bosonic topological orders
The string-net approach by Levin and Wen, and the local unitary
transformation approach by Chen, Gu, and Wen, provide ways to classify
topological orders with gappable edge in 2D bosonic systems. The two approaches
reveal that the mathematical framework for 2+1D bosonic topological order with
gappable edge is closely related to unitary fusion category theory. In this
paper, we generalize these systematic descriptions of topological orders to 2D
fermion systems. We find a classification of 2+1D fermionic topological orders
with gappable edge in terms of the following set of data , that satisfy a set of non-linear
algebraic equations. The exactly soluble Hamiltonians can be constructed from
the above data on any lattices to realize the corresponding topological orders.
When , our result recovers the previous classification of 2+1D
bosonic topological orders with gappable edge.Comment: 19 page 5 figures, RevTeX
Fast magnetization switching of Stoner particles: A nonlinear dynamics picture
The magnetization reversal of Stoner particles is investigated from the point
of view of nonlinear dynamics within the Landau-Lifshitz-Gilbert formulation.
The following results are obtained. 1) We clarify that the so-called
Stoner-Wohlfarth (SW) limit becomes exact when damping constant is infinitely
large. Under the limit, the magnetization moves along the steepest energy
descent path. The minimal switching field is the one at which there is only one
stable fixed point in the system. 2) For a given magnetic anisotropy, there is
a critical value for the damping constant, above which the minimal switching
field is the same as that of the SW-limit. 3) We illustrate how fixed points
and their basins change under a field along different directions. This change
explains well why a non-parallel field gives a smaller minimal switching field
and a short switching time. 4) The field of a ballistic magnetization reversal
should be along certain direction window in the presence of energy dissipation.
The width of the window depends on both of the damping constant and the
magnetic anisotropy. The upper and lower bounds of the direction window
increase with the damping constant. The window width oscillates with the
damping constant for a given magnetic anisotropy. It is zero for both zero and
infinite damping. Thus, the perpendicular field configuration widely employed
in the current experiments is not the best one since the damping constant in a
real system is far from zero.Comment: 10 pages, 9 figures. submitted to PR
Two-body effects in the decay rate of atomic levels
Recoil corrections to the atomic decay rate are considered in the order of
Zm/M . The expressions are treated exactly without any expansion over Z alpha.
The expressions obtained are valid both for muonic atoms (for which they
contribute on the level of a few percent in high Z ions) and for electronic
atoms. Explicit results for Lyman-alpha transitions for low-Z of the order
(Zm/M)(Z alpha)^2 are also presented.Comment: 5 pages, 1 table, email: [email protected]
Relativistic diffusive motion in random electromagnetic fields
We show that the relativistic dynamics in a Gaussian random electromagnetic
field can be approximated by the relativistic diffusion of Schay and Dudley.
Lorentz invariant dynamics in the proper time leads to the diffusion in the
proper time. The dynamics in the laboratory time gives the diffusive transport
equation corresponding to the Juettner equilibrium at the inverse temperature
\beta^{-1}=mc^{2}. The diffusion constant is expressed by the field strength
correlation function (Kubo's formula).Comment: the version published in JP
Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV
The near-side ridge structure in the (Delta phi)-(Delta eta) correlation
observed by the CMS Collaboration for pp collisions at 7 TeV at LHC can be
explained by the momentum kick model in which the ridge particles are medium
partons that suffer a collision with the jet and acquire a momentum kick along
the jet direction. Similar to the early medium parton momentum distribution
obtained in previous analysis for nucleus-nucleus collisions at 0.2 TeV, the
early medium parton momentum distribution in pp collisions at 7 TeV exhibits a
rapidity plateau as arising from particle production in a flux tube.Comment: Talk presented at Workshop on High-pT Probes of High-Density QCD at
the LHC, Palaiseau, May 30-June2, 201
Multi-Atomic Mirror for Perfect Reflection of Single Photons in A Wide Band of Frequency
A resonant two level atom doped in one dimensional waveguide behaves as a
mirror, but this single-atom "mirror" can only reflect single photon perfectly
at a specific frequency. For a one dimensional coupled-resonator waveguide, we
propose to extend the perfect reflection region from a specific frequency to a
wide band by placing many atoms individually in the resonators in a finite
coordinate region of the waveguide. Such a doped resonator array promises us to
control the propagation of a practical photon wave packet with certain momentum
distribution instead of a single photon, which is ideally represented by a
plane wave with specific momentum. The studies based on the discrete-coordinate
scattering theory display that such hybrid structure indeed provides a
near-perfect reflection for single photon in a wide band. We also calculated
photon group velocity distribution, which shows that the perfect reflection
with wide band exactly corresponds to the stopping light region.Comment: 8 pages, 10 figure
- …