11,199 research outputs found
A heuristic approach to the weakly interacting Bose gas
Some thermodynamic properties of weakly interacting Bose systems are derived
from dimensional and heuristic arguments and thermodynamic relations, without
resorting to statistical mechanics
Magnetoelasticity theory of incompressible quantum Hall liquids
A simple and physically transparent magnetoelasticity theory is proposed to
describe linear dynamics of incompressible fractional quantum Hall states. The
theory manifestly satisfies the Kohn theorem and the -sum rule, and predicts
a gaped intra-Landau level collective mode with a roton minimum. In the limit
of vanishing bare mass the correct form of the static structure factor,
, is recovered. We establish a connection of the present approach
to the fermionic Chern-Simons theory, and discuss further extensions and
applications. We also make an interesting analogy of the present theory to the
theory of visco-elastic fluids.Comment: RevTeX 4, 6 pages; expanded version to appear in PRB; more technical
details, and discussions of the physics adde
Microwave Response and Spin Waves in Superconducting Ferromagnets
Excitation of spin waves is considered in a superconducting ferromagnetic
slab with the equilibrium magnetization both perpendicular and parallel to the
surface. The surface impedance is calculated and its behavior near propagation
thresholds is analyzed. Influence of non-zero magnetic induction at the surface
is considered in various cases. The results provide a basis for investigation
of materials with coexisting superconductivity and magnetism by microwave
response measurements.Comment: 10 pages, 7 figure
Relativistic Theory of Hydrodynamic Fluctuations with Applications to Heavy Ion Collisions
We develop the relativistic theory of hydrodynamic fluctuations for
application to high energy heavy ion collisions. In particular, we investigate
their effect on the expanding boost-invariant (Bjorken) solution of the
hydrodynamic equations. We discover that correlations over a long rapidity
range are induced by the propagation of the sound modes. Due to the expansion,
the dispersion law for these modes is non-linear and attenuated even in the
limit of zero viscosity. As a result, there is a non-dissipative wake behind
the sound front which is generated by any instantaneous point-like fluctuation.
We evaluate the two-particle correlators using the initial conditions and
hydrodynamic parameters relevant for heavy-ion collisions at RHIC and LHC. In
principle these correlators can be used to obtain information about the
viscosities because the magnitudes of the fluctuations are directly
proportional to them.Comment: 39 pages, 6 figures; references adde
On an exact hydrodynamic solution for the elliptic flow
Looking for the underlying hydrodynamic mechanisms determining the elliptic
flow we show that for an expanding relativistic perfect fluid the transverse
flow may derive from a solvable hydrodynamic potential, if the entropy is
transversally conserved and the corresponding expansion "quasi-stationary",
that is mainly governed by the temperature cooling. Exact solutions for the
velocity flow coefficients and the temperature dependence of the spatial
and momentum anisotropy are obtained and shown to be in agreement with the
elliptic flow features of heavy-ion collisions.Comment: 10 pages, 4 figure
Polarons in suspended carbon nanotubes
We prove theoretically the possibility of electric-field controlled polaron
formation involving flexural (bending) modes in suspended carbon nanotubes.
Upon increasing the field, the ground state of the system with a single extra
electron undergoes a first order phase transition between an extended state and
a localized polaron state. For a common experimental setup, the threshold
electric field is only of order V/m
Controlling qubit transitions during non-adiabatic rapid passage through quantum interference
In adiabatic rapid passage, the Bloch vector of a qubit is inverted by slowly
inverting an external field to which it is coupled, and along which it is
initially aligned. In non-adiabatic twisted rapid passage, the external field
is allowed to twist around its initial direction with azimuthal angle \phi(t)
at the same time that it is non-adiabatically inverted. For polynomial twist,
\phi(t) \sim Bt^{n}. We show that for n \ge 3, multiple qubit resonances can
occur during a single inversion of the external field, producing strong
interference effects in the qubit transition probability. The character of the
interference is controllable through variation of the twist strength B.
Constructive and destructive interference are possible, greatly enhancing or
suppressing qubit transitions. Experimental confirmation of these controllable
interference effects has already occurred. Application of this interference
mechanism to the construction of fast fault-tolerant quantum CNOT and NOT gates
is discussed.Comment: 8 pages, 7 figures, 2 tables; submitted to J. Mod. Op
- …