7,999 research outputs found

    Phenomenological Analysis of pppp and pˉp\bar{p}p Elastic Scattering Data in the Impact Parameter Space

    Get PDF
    We use an almost model-independent analytical parameterization for pppp and pˉp\bar{p}p elastic scattering data to analyze the eikonal, profile, and inelastic overlap functions in the impact parameter space. Error propagation in the fit parameters allows estimations of uncertainty regions, improving the geometrical description of the hadron-hadron interaction. Several predictions are shown and, in particular, the prediction for pppp inelastic overlap function at s=14\sqrt{s}=14 TeV shows the saturation of the Froissart-Martin bound at LHC energies.Comment: 15 pages, 16 figure

    Comment on "On the ionization equilibrium of hot hydrogen plasma and thermodynamic consistency of formulating finite partition functions"

    Full text link
    Zaghloul [Phys. Plasmas 17, 062701 (2010); arXiv:1010.1161v1] reconsiders the occupation probability formalism in plasma thermodynamics and claims inconsistencies in previous models. I show that the origin of this incorrect claim is an omission of the configurational factor from the partition function. This arXiv version is supplemented with two appendices, where I add remarks and comments on two more recent publications of the same author on the same subject: on his response to this Comment [Phys. Plasmas 17, 124705 (2010)] and on his criticism towards the Hummer and Mihalas's (1988) formalism [Phys. Plasmas 17, 122903 (2010); arXiv:1010.1102v1].Comment: 4 pages: 2 pages of the journal publication + 2 pages of the electronic supplemen

    Modeling interactions for resonant p-wave scattering

    Full text link
    In view of recent experiments on ultra-cold polarized fermions, the zero-range potential approach is generalized to situations where two-body scattering is resonant in the p-wave channel. We introduce a modified scalar product which reveals a deep relation between the geometry of the Hilbert space and the interaction. This formulation is used to obtain a simple interpretation for the transfer rates between atomic and molecular states within a two branches picture of the many-body system close to resonance. At resonance, the energy of the dilute gas is found to vary linearly with density.Comment: 4 page

    Superfluid pairing in a mixture of a spin-polarized Fermi gas and a dipolar condensate

    Full text link
    We consider a mixture of a spin-polarized Fermi gas and a dipolar Bose-Einstein condensate in which s-wave scattering between fermions and the quasiparticles of the dipolar condensate can result in an effective attractive Fermi-Fermi interaction anisotropic in nature and tunable by the dipolar interaction. We show that such an interaction can significantly increase the prospect of realizing a superfluid with a gap parameter characterized with a coherent superposition of all odd partial waves. We formulate, in the spirit of the Hartree-Fock-Bogoliubov mean-field approach, a theory which allows us to estimate the critical temperature when the anisotropic Fock potential is taken into consideration and to determine the system parameters that optimize the critical temperature at which such a superfluid emerges before the system begins to phase separate.Comment: 10 pages, 3 figure

    Analysis of pion elliptic flows and HBT interferometry in a granular quark-gluon plasma droplet model

    Get PDF
    In many simulations of high-energy heavy-ion collisions on an event-by-event analysis, it is known that the initial energy density distribution in the transverse plane is highly fluctuating. Subsequent longitudinal expansion will lead to many longitudinal tubes of quark-gluon plasma which have tendencies to break up into many spherical droplets because of sausage instabilities. We are therefore motivated to use a model of quark-gluon plasma granular droplets that evolve hydrodynamically to investigate pion elliptic flows and Hanbury-Brown-Twiss interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii in \sqrt{s_{NN}}=200 GeV Au + Au collisions at RHIC can be described well by an expanding source of granular droplets with an anisotropic velocity distribution.Comment: 9 pages, 6 figures, in Late

    Fluctuations in the presence of fields -Phenomenological Gaussian approximation and a new class of thermodynamic inequalities-

    Full text link
    The work approaches the study of the fluctuations for the thermodynamic systems in the presence of the fields. The approach is of phenomenological nature and developed in a Gaussian approximation. The study is exemplified on the cases of a magnetizable continuum in a magnetoquasistatic field, as well as for the so called discrete systems. In the last case one finds that the fluctuations estimators depends both on the intrinsic properties of the system and on the characteristics of the environment. Following some earlier ideas of one of the authors we present a new class of thermodynamic inequalities for the systems investigated in this paper. In the case of two variables the mentioned inequalities are nothing but non-quantum analogues of the well known quantum Heisenberg (''uncertainty'') relations. Also the obtained fluctuations estimators support the idea that the Boltzmann's constant k has the signification of a generic indicator of stochasticity for thermodynamic systems. Pacs number(s): 05.20.-y, 05.40.-a, 05.70.-a, 41.20.GzComment: preprint, 24 page

    Many-body effects on adiabatic passage through Feshbach resonances

    Full text link
    We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms Gamma on sweep rate alpha, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law GammaalphaGamma\propto alpha is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law Gammaalpha1/3Gamma\propto alpha^{1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.Comment: 9 pages, 9 figure

    Quarkonia and Quark Drip Lines in Quark-Gluon Plasma

    Full text link
    We extract the QQ-Qˉ\bar Q potential by using the thermodynamic quantities obtained in lattice gauge calculations. The potential is tested and found to give dissociation temperatures that agree well with those from lattice gauge spectral function analysis. Using such a QQ-Qˉ\bar Q potential, we examine the quarkonium states in a quark-gluon plasma and determine the `quark drip lines' which separate the region of bound color-singlet QQˉQ\bar Q states from the unbound region. The characteristics of the quark drip lines severely limit the region of possible bound QQˉQ\bar Q states with light quarks to temperatures close to the phase transition temperature. Bound quarkonia with light quarks may exist very near the phase transition temperature if their effective quark mass is of the order of 300-400 MeV and higher.Comment: 24 pages, 13 figures, in LaTe

    Mapping between Hamiltonians with attractive and repulsive potentials on a lattice

    Full text link
    Through a simple and exact analytical derivation, we show that for a particle on a lattice, there is a one-to-one correspondence between the spectra in the presence of an attractive potential V^\hat{V} and its repulsive counterpart V^-\hat{V}. For a Hermitian potential, this result implies that the number of localized states is the same in both, attractive and repulsive, cases although these states occur above (below) the band-continnum for the repulsive (attractive) case. For a \mP\mT-symmetric potential that is odd under parity, our result implies that in the \mP\mT-unbroken phase, the energy eigenvalues are symmetric around zero, and that the corresponding eigenfunctions are closely related to each other.Comment: 6 pages, 1 figur

    Casimir-like force arising from quantum fluctuations in a slow-moving dilute Bose-Einstein condensate

    Full text link
    We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving superfluid flow. We model the object by a localized potential varying only in the flow direction and model the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We show that this force exists for any arbitrarily small flow velocity and discuss the implications for the stability of superfluid flow.Comment: v3: revised discussion of toroidal geometry; replotted figure; minor editorial changes; quantitative and qualitative conclusions remain unchange
    corecore