292 research outputs found
Subbarrel patterns in somatosensory cortical barrels can emerge from local dynamic instabilities
Complex spatial patterning, common in the brain as well as in other biological systems, can emerge as a result of dynamic interactions that occur locally within developing structures. In the rodent somatosensory cortex, groups of neurons called "barrels" correspond to individual whiskers on the contralateral face. Barrels themselves often contain subbarrels organized into one of a few characteristic patterns. Here we demonstrate that similar patterns can be simulated by means of local growth-promoting and growth-retarding interactions within the circular domains of single barrels. The model correctly predicts that larger barrels contain more spatially complex subbarrel patterns, suggesting that the development of barrels and of the patterns within them may be understood in terms of some relatively simple dynamic processes. We also simulate the full nonlinear equations to demonstrate the predictive value of our linear analysis. Finally, we show that the pattern formation is robust with respect to the geometry of the barrel by simulating patterns on a realistically shaped barrel domain. This work shows how simple pattern forming mechanisms can explain neural wiring both qualitatively and quantitatively even in complex and irregular domains. © 2009 Ermentrout et al
Desperately seeking fixedness: practitioners accounts of 'becoming doctoral researchers
We draw upon the concept of liminality to explore the experiences of practitioners enrolled on a UK Doctor of Business Administration (DBA) programme. We analyse twenty practitioners’ reflective journals to detail how the DBA liminal space was negotiated. More specifically, we describe how practitioners deal with their struggles of identity incoherence or ‘monsters of doubt’ which are amplified in the DBA context owing to the complex nature of the separation phase of liminality. We identify three broad methods deployed in this endeavour: ‘scaffolding’; ‘putting the past to work’ and ‘bracketing’- which evidence practitioners ‘desperately seeking fixedness’. We make three contributions – first, we provide empirical insights into the experiences of the increasingly significant, but still under researched, DBA student. Second, we develop our understandings of monsters of doubt through illustrating how these are negotiated for learning to progress. Finally, we contribute to wider discussions of ‘becoming’ to demonstrate the simultaneous and paradoxical importance of movement and fixedness in order to learn and become
Surface Aggregation of Urinary Proteins and Aspartic Acid-Rich Peptides on the Faces of Calcium Oxalate Monohydrate Investigated by In Situ Force Microscopy
The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin, and the 27-residue synthetic peptides (DDDS)6DDD and (DDDG)6DDD (D = aspartic acid, S = serine, and G = glycine) was investigated via in situ atomic force microscopy. The results show that these four growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition of or an increase in the step speeds (with respect to the impurity-free system), depending on a range of factors that include peptide or protein concentration, supersaturation, and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we propose a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at the crystal surface
A psycho-Geoinformatics approach for investigating older adults’ driving behaviours and underlying cognitive mechanisms
Introduction: Safe driving constantly challenges the driver’s ability to respond to the dynamic traffic scene under space and time constraints. It is of particular importance for older drivers to perform sufficient visual and motor actions with effective coordination due to the fact of age-related cognitive decline. However, few studies have been able to integrate drivers’ visual-motor behaviours with environmental information in a spatial-temporal context and link to the cognitive conditions of individual drivers. Little is known about the mechanisms that underpin the deterioration in visual-motor coordination of older drivers. Development: Based on a review of driving-related cognitive decline in older adults and the context of driver-vehicle-environment interactions, this paper established a conceptual framework to identify the parameters of driver’s visual and motor behaviour, and reveal the cognitive process from visual search to vehicle control in driving. The framework led to a psycho-geoinformatics approach to measure older drivers’ driving behaviours and investigate the underlying cognitive mechanisms. The proposed data collection protocol and the analysis and assessments depicted the psycho-geoinformatics approach on obtaining quantified variables and the key means of analysis, as well as outcome measures. Conclusions: Recordings of the driver and their interactions with the vehicle and environment at a detailed scale give a closer assessment of the driver’s behaviours. Using geoinformatics tools in driving behaviours assessment opens a new era of research with many possible analytical options, which do not have to rely on human observations. Instead, it receives clear indicators of the individual drivers’ interactions with the vehicle and the traffic environment. This approach should make it possible to identify lower-performing older drivers and problematic visual and motor behaviours, and the cognitive predictors of risky driving behaviours. A better targeted regulation and tailored intervention programs for older can be developed by further research
MicroRNA-34a Modulates c-Myc Transcriptional Complexes to Suppress Malignancy in Human Prostate Cancer Cells
MicroRNA-34a (miR-34a), a potent mediator of tumor suppressor p53, has been reported to function as a tumor suppressor and miR-34a was found to be downregulated in prostate cancer tissues. We studied the functional effects of miR-34a on c-Myc transcriptional complexes in PC-3 prostate cancer cells. Transfection of miR-34a into PC-3 cells strongly inhibited in vitro cell proliferation, cell invasion and promoted apoptosis. Transfection of miR-34a into PC-3 cells also significantly inhibited in vivo xenograft tumor growth in nude mice. miR-34a downregulated expression of c-Myc oncogene by targeting its 3′ UTR as shown by luciferase reporter assays. miR-34a was found to repress RhoA, a regulator of cell migration and invasion, by suppressing c-Myc–Skp2–Miz1 transcriptional complex that activates RhoA. Overexpression of c-Myc reversed miR-34a suppression of RhoA expression, suggesting that miR-34a inhibits invasion by suppressing RhoA through c-Myc. miR-34a was also found to repress c-Myc-pTEFB transcription elongation complex, indicating one of the mechanisms by which miR-34a has profound effects on cellular function. This is the first report to document that miR-34a suppresses assembly and function of the c-Myc–Skp2–Miz1 complex that activates RhoA and the c-Myc-pTEFB complex that elongates transcription of various genes, suggesting a novel role of miR-34a in the regulation of transcription by c-Myc complex
Keeping an eye on noisy movements: On different approaches to perceptual-motor skill research and training
Contemporary theorising on the complementary nature of perception and action in expert performance has led to the emergence of different emphases in studying movement coordination and gaze behaviour. On the one hand, coordination research has examined the role that variability plays in movement control, evidencing that variability facilitates individualised adaptations during both learning and performance. On the other hand, and at odds with this principle, the majority of gaze behaviour studies have tended to average data over participants and trials, proposing the importance of universal 'optimal' gaze patterns in a given task, for all performers, irrespective of stage of learning. In this article, new lines of inquiry are considered with the aim of reconciling these two distinct approaches. The role that inter- and intra-individual variability may play in gaze behaviours is considered, before suggesting directions for future research
Conserved synteny at the protein family level reveals genes underlying Shewanella species’ cold tolerance and predicts their novel phenotypes
© The Authors 2009. This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License. The definitive version was published in Functional & Integrative Genomics 10 (2010): 97-110, doi:10.1007/s10142-009-0142-y.Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species’ cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach, we find a link between cold and salt tolerance of the species and the presence in the genome of a Na+/H+ antiporter gene cluster. Other cold-tolerance-related genes include peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach, we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in Shewanella woodyi, degradation of ethanolamine by Shewanella benthica, and propanediol degradation by Shewanella putrefaciens CN32 and Shewanella sp. W3-18-1.This research was supported by the U.S. Department of Energy (DOE)
Office of Biological and Environmental Research under the Genomics:
GTL Program via the Shewanella Federation consortium
Metabolic responses to high pCO2 conditions at a CO2 vent site in juveniles of a marine isopod species assemblage
We are starting to understand the relationship between metabolic rate responses and species' ability to respond to exposure to high pCO2. However, most of our knowledge has come from investigations of single species. The examination of metabolic responses of closely related species with differing distributions around natural elevated CO2 areas may be useful to inform our understanding of their adaptive significance. Furthermore, little is known about the physiological responses of marine invertebrate juveniles to high pCO2, despite the fact they are known to be sensitive to other stressors, often acting as bottlenecks for future species success. We conducted an in situ transplant experiment using juveniles of isopods found living inside and around a high pCO2 vent (Ischia, Italy): the CO2 'tolerant' Dynamene bifida and 'sensitive' Cymodoce truncata and Dynamene torelliae. This allowed us to test for any generality of the hypothesis that pCO2 sensitive marine invertebrates may be those that experience trade-offs between energy metabolism and cellular homoeostasis under high pCO2 conditions. Both sensitive species were able to maintain their energy metabolism under high pCO2 conditions, but in C. truncata this may occur at the expense of [carbonic anhydrase], confirming our hypothesis. By comparison, the tolerant D. bifida appeared metabolically well adapted to high pCO2, being able to upregulate ATP production without recourse to anaerobiosis. These isopods are important keystone species; however, given they differ in their metabolic responses to future pCO2, shifts in the structure of the marine ecosystems they inhabit may be expected under future ocean acidification conditions
Direct observation of mineral-organic composite formation reveals occlusion mechanism
Manipulation of inorganic materials with organic macromolecules enables organisms to create biominerals such as bones and seashells, where occlusion of biomacromolecules within individual crystals generates superior mechanical properties. Current understanding of this process comes from entrapment of micron-size particles in cooling melts. Here, by studying micelle incorporation in calcite with atomic force microscopy (AFM) and micromechanical simulations, we show that different mechanisms govern nanoscale occlusion. By simultaneously visualizing the micelles and propagating step edges, we demonstrate that the micelles experience significant compression during occlusion, which is accompanied by cavity formation. This generates local lattice strain, leading to enhanced mechanical properties. These results give new insight into the formation of occlusions in natural and synthetic crystals, and will facilitate the synthesis of multifunctional nanocomposite crystals
- …