795 research outputs found

    Double Time Window Targeting Technique: Real time DMRG dynamics in the PPP model

    Get PDF
    We present a generalized adaptive time-dependent density matrix renormalization group (DMRG) scheme, called the {\it double time window targeting} (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo {\it et. al}, [Phys.Rev. Lett. {\bf 91}, 049701 (2003)], and the time-step targeting (TST) algorithm by Feiguin and White [Phys. Rev. B {\bf 72}, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics and spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity and, (iii) the simplistic interpretation of long-range correlations by merely renormalizing the {\it U} value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.Comment: Final (published) version; 39 pages, 13 figures, 1 table; 2 new references adde

    Exact diagonalization study of the tunable edge magnetism in graphene

    Full text link
    The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing graphene zigzag edge states with a ferromagnetic phase, to a limit equivalent to a Hubbard chain, which does not allow ferromagnetism. This analysis sheds light onto the question why the edge states have a ferromagnetic ground state, while a usual one-dimensional metal does not. Essentially we find that there are two important features of edge states: (a) umklapp processes are completely forbidden for edge states; this allows a spin-polarized ground state. (b) the strong momentum dependence of the effective interaction vertex for edge states gives rise to a regime of partial spin-polarization and a second order phase transition between a standard paramagnetic Luttinger liquid and ferromagnetic Luttinger liquid.Comment: 11 pages, 8 figure

    Low ordered magnetic moment by off-diagonal frustration in undoped parent compounds to iron-based high-Tc superconductors

    Full text link
    A Heisenberg model over the square lattice recently introduced by Si and Abrahams to describe local-moment magnetism in the new class of Fe-As high-Tc superconductors is analyzed in the classical limit and on a small cluster by exact diagonalization. In the case of spin-1 iron atoms, large enough Heisenberg exchange interactions between neighboring spin-1/2 moments on different iron 3d orbitals that frustrate true magnetic order lead to hidden magnetic order that violates Hund's rule. It accounts for the low ordered magnetic moment observed by elastic neutron diffraction in an undoped parent compound to Fe-As superconductors. We predict that low-energy spin-wave excitations exist at wavenumbers corresponding to either hidden Neel or hidden ferromagnetic order.Comment: 7 pages, 6 figures, version published in Physical Review Letter

    Transition to Landau Levels in Graphene Quantum Dots

    Full text link
    We investigate the electronic eigenstates of graphene quantum dots of realistic size (i.e., up to 80 nm diameter) in the presence of a perpendicular magnetic field B. Numerical tight-binding calculations and Coulomb-blockade measurements performed near the Dirac point exhibit the transition from the linear density of states at B=0 to the Landau level regime at high fields. Details of this transition sensitively depend on the underlying graphene lattice structure, bulk defects, and localization effects at the edges. Key to the understanding of the parametric evolution of the levels is the strength of the chiral-symmetry breaking K-K' scattering. We show that the parametric variation of the level variance provides a quantitative measure for this scattering mechanism. We perform measurements of the parametric motion of Coulomb blockade peaks as a function of magnetic field and find good agreement. We thereby demonstrate that the magnetic-field dependence of graphene energy levels may serve as a sensitive indicator for the properties of graphene quantum dots and, in further consequence, for the validity of the Dirac-picture.Comment: 10 pages, 11 figures, higher quality images available on reques

    A duality relation for fluid spacetime

    Get PDF
    We consider the electromagnetic resolution of gravitational field. We show that under the duality transformation, in which active and passive electric parts of the Riemann curvature are interchanged, a fluid spacetime in comoving coordinates remains invariant in its character with density and pressure transforming, while energy flux and anisotropic pressure remaining unaltered. Further if fluid admits a barotropic equation of state, p=(γ1)ρp = (\gamma - 1) \rho where 1γ21 \leq \gamma \leq 2, which will transform to p=(2γ3γ21)ρp = (\frac{2 \gamma}{3 \gamma - 2} - 1) \rho. Clearly the stiff fluid and dust are dual to each-other while ρ+3p=0\rho + 3 p =0, will go to flat spacetime. However the n (ρ3p=0)(\rho - 3 p = 0) and the deSitter (ρ+p=0(\rho + p = 0) universes ar e self-dual.Comment: 5 pages, LaTeX version, Accepted in Classical Quantum Gravity as a Lette

    Uniqueness of a Negative Mode About a Bounce Solution

    Get PDF
    We consider the uniqueness problem of a negative eigenvalue in the spectrum of small fluctuations about a bounce solution in a multidimensional case. Our approach is based on the concept of conjugate points from Morse theory and is a natural generalization of the nodal theorem approach usually used in one dimensional case. We show that bounce solution has exactly one conjugate point at τ=0\tau=0 with multiplicity one.Comment: 4 pages,LaTe

    Numerical study of critical properties and hidden orders in dimerized spin ladders

    Get PDF
    Dimerized antiferromagnetic spin-1/2 ladders are known to exhibit a quantum critical phase transition in the ground state, the existence or absence of which is dependent on the dimerization pattern of the ladder. The gapped phases cannot be distinguished by the conventional Landau long-range order parameter. However, they possess a non-local (hidden) string order parameter, which is non-zero in one phase and vanishes in the other. We use an exact diagonalization technique to calculate ground state energies, energy gaps and string order parameters of dimerized two- and three-leg Heisenberg ladders, as well as a critical scaling analysis to yield estimates of the critical exponents nu and beta.Comment: 7 pages, 14 figures. V.2: Extended version to appear in PR

    Evolution of Thick Walls in Curved Spacetimes

    Full text link
    We generalize our previous thick shell formalism to incorporate any codimension-1 thick wall with a peculiar velocity and proper thickness bounded by arbitrary spacetimes. Within this new formulation we obtain the equation of motion of a spherically symmetric dust thick shell immersed in vacuum as well as in Friedmann-Robertson-Walker spacetimes.Comment: 8 pages, 1 figur

    Exact Solutions of Lovelock-Born-Infeld Black Holes

    Full text link
    The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the literature. The conical singularity of the metric around the origin can be removed by a proper choice of the black hole parameters. The thermodynamic properties of the solution are also analyzed and, in particular, it is shown that the behaviour of the specific heat indicates the existence of a stability transition point in the vacuum solutions. We discuss the similarities existing between this five-dimensional geometry and the three-dimensional black hole. Like BTZ black hole, the Lovelock black hole has an infinite lifetime.Comment: 9 pages, 7 figures, Revtex. Extended version of the paper published in Phys. Rev.

    Resolving all-order method convergence problems for atomic physics applications

    Full text link
    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the CI+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, reduced linear equation (RLE) and direct inversion of iterative subspace (DIIS). Examples are presented for B, Al, Zn+^+, and Yb+^+. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications
    corecore