194 research outputs found

    Density Estimation of Spatio-Temporal Point Patterns Using Moran’s Statistics

    Get PDF
    Moran’s Index is a statistic that measures spatial autocorrelation, quantifying the degree of dispersion (or spread) of objects in space. When investigating data in an area, a single Moran statistic may not give a sufficient summary of the autocorrelation spread. However, by partitioning the area and taking the Moran statistic of each subarea, we discover patterns of the local neighbors not otherwise apparent. In this paper, we consider the model of the spread of an infectious disease, incorporate time factor, and simulate a multilevel Poisson process where the dependence among the levels is captured by the rate of increase of the disease spread over time, steered by a common factor in the scale. The main consequence of our results is that our Moran statistic is calculated from an explicit algorithm in a Monte Carlo simulation setting. Results are compared to Geary’s statistic and estimates of parameters under Poisson process are given

    Current practices in cancer spatial data analysis: a call for guidance

    Get PDF
    There has long been a recognition that place matters in health, from recognition of clusters of yellow fever and cholera in the 1800s to modern day analyses of regional and neighborhood effects on cancer patterns. Here we provide a summary of discussions about current practices in the spatial analysis of georeferenced cancer data by a panel of experts recently convened at the National Cancer Institute

    Enhanced Inference for Finite Population Sampling-Based Prevalence Estimation with Misclassification Errors

    Full text link
    Epidemiologic screening programs often make use of tests with small, but non-zero probabilities of misdiagnosis. In this article, we assume the target population is finite with a fixed number of true cases, and that we apply an imperfect test with known sensitivity and specificity to a sample of individuals from the population. In this setting, we propose an enhanced inferential approach for use in conjunction with sampling-based bias-corrected prevalence estimation. While ignoring the finite nature of the population can yield markedly conservative estimates, direct application of a standard finite population correction (FPC) conversely leads to underestimation of variance. We uncover a way to leverage the typical FPC indirectly toward valid statistical inference. In particular, we derive a readily estimable extra variance component induced by misclassification in this specific but arguably common diagnostic testing scenario. Our approach yields a standard error estimate that properly captures the sampling variability of the usual bias-corrected maximum likelihood estimator of disease prevalence. Finally, we develop an adapted Bayesian credible interval for the true prevalence that offers improved frequentist properties (i.e., coverage and width) relative to a Wald-type confidence interval. We report the simulation results to demonstrate the enhanced performance of the proposed inferential methods

    New Approaches to Model Simulated Spatio-Temporal Moran\u27s Index

    Get PDF
    The Moran\u27s index is a statistic that measures spatial autocorrelation; it quantifies the degree of dispersion (or clustering) of objects in space. However, when investigating data over a general area, a single global Moran statistic may not give a sufficient summary of the spread, behavior, features or latent surfaces shared by neighboring areas; rather, by partitioning the area and taking the Moran statistic of each divided subareas, we can discover patterns of the local neighbors not otherwise apparent. In this paper, we present a simulation experiment where the local Moran values are computed and a time variable is added to a spatial Poisson point process. Changes in the Moran statistics over the neighboring areas are investigated and ideas on how to perform the analysis are proposed

    A Design and Analytic Strategy for Monitoring Disease Positivity and Case Characteristics in Accessible Closed Populations

    Full text link
    We propose a monitoring strategy for efficient and robust estimation of disease prevalence and case numbers within closed and enumerated populations such as schools, workplaces, or retirement communities. The proposed design relies largely on voluntary testing, notoriously biased (e.g., in the case of COVID-19) due to non-representative sampling. The approach yields unbiased and comparatively precise estimates with no assumptions about factors underlying selection of individuals for voluntary testing, building on the strength of what can be a small random sampling component. This component unlocks a previously proposed "anchor stream" estimator, a well-calibrated alternative to classical capture-recapture (CRC) estimators based on two data streams. We show here that this estimator is equivalent to a direct standardization based on "capture", i.e., selection (or not) by the voluntary testing program, made possible by means of a key parameter identified by design. This equivalency simultaneously allows for novel two-stream CRC-like estimation of general means (e.g., of continuous variables such as antibody levels or biomarkers). For inference, we propose adaptations of a Bayesian credible interval when estimating case counts and bootstrapping when estimating means of continuous variables. We use simulations to demonstrate significant precision benefits relative to random sampling alone

    A Bayesian Downscaler Model to Estimate Daily PM2.5 levels in the Continental US

    Full text link
    There has been growing interest in extending the coverage of ground PM2.5 monitoring networks based on satellite remote sensing data. With broad spatial and temporal coverage, satellite based monitoring network has a strong potential to complement the ground monitor system in terms of the spatial-temporal availability of the air quality data. However, most existing calibration models focused on a relatively small spatial domain and cannot be generalized to national-wise study. In this paper, we proposed a statistically reliable and interpretable national modeling framework based on Bayesian downscaling methods with the application to the calibration of the daily ground PM2.5 concentrations across the Continental U.S. using satellite-retrieved aerosol optical depth (AOD) and other ancillary predictors in 2011. Our approach flexibly models the PM2.5 versus AOD and the potential related geographical factors varying across the climate regions and yields spatial and temporal specific parameters to enhance the model interpretability. Moreover, our model accurately predicted the national PM2.5 with a R2 at 70% and generates reliable annual and seasonal PM2.5 concentration maps with its SD. Overall, this modeling framework can be applied to the national scale PM2.5 exposure assessments and also quantify the prediction errors.Comment: 14 pages, 6 figure

    Tailoring Capture-Recapture Methods to Estimate Registry-Based Case Counts Based on Error-Prone Diagnostic Signals

    Full text link
    Surveillance research is of great importance for effective and efficient epidemiological monitoring of case counts and disease prevalence. Taking specific motivation from ongoing efforts to identify recurrent cases based on the Georgia Cancer Registry, we extend recently proposed "anchor stream" sampling design and estimation methodology. Our approach offers a more efficient and defensible alternative to traditional capture-recapture (CRC) methods by leveraging a relatively small random sample of participants whose recurrence status is obtained through a principled application of medical records abstraction. This sample is combined with one or more existing signaling data streams, which may yield data based on arbitrarily non-representative subsets of the full registry population. The key extension developed here accounts for the common problem of false positive or negative diagnostic signals from the existing data stream(s). In particular, we show that the design only requires documentation of positive signals in these non-anchor surveillance streams, and permits valid estimation of the true case count based on an estimable positive predictive value (PPV) parameter. We borrow ideas from the multiple imputation paradigm to provide accompanying standard errors, and develop an adapted Bayesian credible interval approach that yields favorable frequentist coverage properties. We demonstrate the benefits of the proposed methods through simulation studies, and provide a data example targeting estimation of the breast cancer recurrence case count among Metro Atlanta area patients from the Georgia Cancer Registry-based Cancer Recurrence Information and Surveillance Program (CRISP) database
    • …
    corecore