8 research outputs found

    Pulmonary embolism after major abdominal surgery in gynecologic oncology.

    No full text
    OBJECTIVE: To estimate the incidence and prognostic significance of postoperative pulmonary embolism after gynecologic oncology surgery. METHODS: All patients who underwent gynecologic oncology surgery from June 2001 to June 2003 and received venous thromboembolism prophylaxis with only intermittent pneumatic compression and early ambulation were identified from our database. Patients were grouped by procedure (major/minor abdominal or nonabdominal surgery), diagnosis (malignant/nonmalignant), and cancer subtype. Groups were compared by chi2 analysis and logistic regression. Survival was studied with the Kaplan-Meier method and Mantel-Byar test. RESULTS: A total of 1,373 surgical patients were identified over the 2-year period, including 839 major abdominal surgery cases and 534 minor abdominal surgery or nonabdominal surgery cases. Of the 839 patients, 507 had a diagnosis of cancer, and 332 were benign. The incidence of pulmonary embolism among cancer patients undergoing major abdominal surgery was 4.1% (21/507) compared with 0.3% (1/332) among patients undergoing major abdominal surgery with benign findings (P \u3c .001, odds ratio [OR] 13.8, 95% confidence interval [CI] 1.9-102.1). The incidence of pulmonary embolism among patients undergoing minor/nonabdominal surgery was 0.4% (2/536). Cancer diagnosis and age more than 60 years were identified as risk factors for pulmonary embolism (P = .009, OR 0.31, 95% CI 0.13-0.74). One-year survival for patients with and those without pulmonary embolism were 48.0% +/- 12% and 77.0% +/- 2%, respectively. CONCLUSION: Patients with cancer undergoing major abdominal surgery and using pneumatic compression for thromboembolic prophylaxis had a 14-fold greater odds of developing a pulmonary embolism compared with patients with benign disease. Randomized studies are needed to determine whether additional prophylactic measures may benefit this high-risk group of patients. LEVEL OF EVIDENCE: II-3

    Identification of genes associated with ovarian cancer metastasis using microarray expression analysis.

    No full text
    Although the transition from early- to advanced-stage ovarian cancer is a critical determinant of survival, little is known about the molecular underpinnings of ovarian metastasis. We hypothesize that microarray analysis of global gene expression patterns in primary ovarian cancer and metastatic omental implants can identify genes that underlie the metastatic process in epithelial ovarian cancer. We utilized Affymetrix U95Av2 microarrays to characterize the molecular alterations that underlie omental metastasis from 47 epithelial ovarian cancer samples collected from multiple sites in 20 patients undergoing primary surgical cytoreduction for advanced-stage (IIIC/IV) serous ovarian cancer. Fifty-six genes demonstrated differential expression between ovarian and omental samples (P \u3c 0.01), and twenty of these 56 differentially expressed genes have previously been implicated in metastasis, cell motility, or cytoskeletal function. Ten of the 56 genes are involved in p53 gene pathways. A Bayesian statistical tree analysis was used to identify a 27-gene expression pattern that could accurately predict the site of tumor (ovary versus omentum). This predictive model was evaluated using an external data set. Nine of the 27 predictive genes have previously been shown to be involved in oncogenesis and/or metastasis, and 10/27 genes have been implicated in p53 pathways. Microarray findings were validated by real-time quantitative PCR. We conclude that gene expression patterns that distinguish omental metastasis from primary epithelial ovarian cancer can be identified and that many of the genes have functions that are biologically consistent with a role in oncogenesis, metastasis, and p53 gene networks
    corecore