10 research outputs found

    Visualization of positive and negative sense viral RNA for probing the mechanism of direct-acting antivirals against hepatitis C virus

    Get PDF
    RNA viruses are highly successful pathogens and are the causative agents for many important diseases. To fully understand the replication of these viruses it is necessary to address the roles of both positive-strand RNA ((+)RNA) and negative-strand RNA ((-)RNA), and their interplay with viral and host proteins. Here we used branched DNA (bDNA) fluorescence in situ hybridization (FISH) to stain both the abundant (+)RNA and the far less abundant (-)RNA in both hepatitis C virus (HCV)- and Zika virus-infected cells, and combined these analyses with visualization of viral proteins through confocal imaging. We were able to phenotypically examine HCV-infected cells in the presence of uninfected cells and revealed the effect of direct-acting antivirals on HCV (+)RNA, (-)RNA, and protein, within hours of commencing treatment. Herein, we demonstrate that bDNA FISH is a powerful tool for the study of RNA viruses that can provide insights into drug efficacy and mechanism of action

    Development of Infectious Clones for Virulent and Avirulent Pichinde Viruses: a Model Virus To Study Arenavirus-Induced Hemorrhagic Fevers ▿ †

    Full text link
    Several arenaviruses can cause hemorrhagic fever diseases (VHFs) in humans, the pathogenic mechanism of which is poorly understood due to their virulent nature and the lack of molecular clones. A safe, convenient, and economical small animal model of arenavirus hemorrhagic fever is based on guinea pigs infected by the arenavirus Pichinde (PICV). PICV does not cause disease in humans, but an adapted strain of PICV (P18) causes a disease in guinea pigs that mimics arenavirus hemorrhagic fever in humans in many aspects, while a low-passaged strain (P2) remains avirulent in infected animals. In order to identify the virulence determinants within the PICV genome, we developed the molecular clones for both the avirulent P2 and virulent P18 viruses. Recombinant viruses were generated by transfecting plasmids that contain the antigenomic L and S RNA segments of PICV under the control of the T7 promoter into BSRT7-5 cells, which constitutively express T7 RNA polymerase. By analyzing viral growth kinetics in vitro and virulence in vivo, we show that the recombinant viruses accurately recapitulate the replication and virulence natures of their respective parental viruses. Both parental and recombinant virulent viruses led to high levels of viremia and titers in different organs of the infected animals, whereas the avirulent viruses were effectively controlled and cleared by the hosts. These novel infectious clones for the PICV provide essential tools to identify the virulence factors that are responsible for the severe VHF-like disease in infected animals

    Direct interaction between alpha-actinin and hepatitis C virus NS5B

    Get PDF
    It has been suggested that cellular proteins are involved in hepatitis C virus (HCV) RNA replication. By using the yeast two-hybrid system, we isolated seven cDNA clones encoding proteins interacting with HCV RNA polymerase (NS5B) from a human liver cDNA library. For one of these, alpha-actinin, we confirmed the interaction by coimmunoprecipitation, immunofluorescent staining and confocal microscopic analysis. Experiments with deletion mutants showed that domains NS5B(84-95), NS5B(466-478), and alpha-actinin(621-733) are responsible for the interaction. Studies of the HCV subgenomic replicon system with small interference RNA indicate that alpha-actinin is essential for HCV RNA replication. Our results suggest alpha-actinin may be a component of the HCV replication complex.</p

    Cap binding and immune evasion revealed by Lassa nucleoprotein structure

    Full text link
    Lassa virus, the causative agent of Lassa fever, causes thousands of deaths annually and is a biological threat agent, for which there is no vaccine and limited therapy. The nucleoprotein (NP) of Lassa virus has essential roles in viral RNA synthesis and immune suppression, the molecular mechanisms of which are poorly understood. Here we report the crystal structure of Lassa virus NP at 1.80 angstrom resolution, which reveals amino (N)- and carboxy (C)-terminal domains with structures unlike any of the reported viral NPs. The N domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription, whereas the C domain contains 3'-5' exoribonuclease activity involved in suppressing interferon induction. To our knowledge this is the first X-ray crystal structure solved for an arenaviral NP, which reveals its unexpected functions and indicates unique mechanisms in cap binding and immune evasion. These findings provide great potential for vaccine and drug development.</p

    In Vitro and In Vivo Characterizations of Pichinde Viral Nucleoprotein Exoribonuclease Functions

    Full text link
    Arenaviruses cause severe hemorrhagic fever diseases in humans, and there are limited preventative and therapeutic measures against these diseases. Previous structural and functional analyses of arenavirus nucleoproteins (NPs) revealed a conserved DEDDH exoribonuclease (RNase) domain that is important for type I interferon (IFN) suppression, but the biological roles of the NP RNase in viral replication and host immune suppression have not been well characterized. Infection of guinea pigs with Pichinde virus (PICV), a prototype arenavirus, can serve as a surrogate small animal model for arenavirus hemorrhagic fevers. In this report, we show that mutation of each of the five RNase catalytic residues of PICV NP diminishes the IFN suppression activity and slightly reduces the viral RNA replication activity. Recombinant PICVs with RNase catalytic mutations can induce high levels of IFNs and barely grow in IFN-competent A549 cells, in sharp contrast to the wild-type (WT) virus, while in IFN-deficient Vero cells, both WT and mutant viruses can replicate at relatively high levels. Upon infection of guinea pigs, the RNase mutant viruses stimulate strong IFN responses, fail to replicate productively, and can become WT revertants. Serial passages of the RNase mutants in vitro can also generate WT revertants. Thus, the NP RNase function is essential for the innate immune suppression that allows the establishment of a productive early viral infection, and it may be partly involved in the process of viral RNA replication. IMPORTANCE Arenaviruses, such as Lassa, Lujo, and Machupo viruses, can cause severe and deadly hemorrhagic fever diseases in humans, and there are limited preventative and treatment options against these diseases. Development of broad-spectrum antiviral drugs depends on a better mechanistic understanding of the conserved arenavirus proteins in viral infection. The nucleoprotein (NPs) of all arenaviruses carry a unique exoribonuclease (RNase) domain that has been shown to be critical for the suppression of type I interferons. However, the functional roles of the NP RNase in arenavirus replication and host immune suppression have not been characterized systematically. Using a prototype arenavirus, Pichinde virus (PICV), we characterized the viral growth and innate immune suppression of recombinant RNase-defective mutants in both cell culture and guinea pig models. Our study suggests that the NP RNase plays an essential role in the suppression of host innate immunity, and possibly in viral RNA replication, and that it can serve as a novel target for developing antiviral drugs against arenavirus pathogens

    HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains

    Full text link
    Early steps of HIV infection of primary human cells remain poorly understood. Here, Francis et al. show that early viral replication complexes accumulate within nuclear speckles, in reliance on viral capsid/host CPSF6 interactions, and preferentially integrate in speckle-associated genomic domains

    Cap binding and immune evasion revealed by Lassa nucleoprotein structure

    Full text link
    Lassa virus, the causative agent of Lassa fever, causes thousands of deaths annually and is a biological threat agent, for which there is no vaccine and limited therapy. The nucleoprotein (NP) of Lassa virus has essential roles in viral RNA synthesis and immune suppression, the molecular mechanisms of which are poorly understood. Here we report the crystal structure of Lassa virus NP at 1.80 Å resolution, which reveals amino (N)- and carboxy (C)-terminal domains with structures unlike any of the reported viral NPs. The N domain folds into a novel structure with a deep cavity for binding the m7GpppN cap structure that is required for viral RNA transcription, whereas the C domain contains 3'-5' exoribonuclease activity involved in suppressing interferon induction. To our knowledge this is the first X-ray crystal structure solved for an arenaviral NP, which reveals its unexpected functions and indicates unique mechanisms in cap binding and immune evasion. These findings provide great potential for vaccine and drug development
    corecore