16 research outputs found

    Genotype-phenotype correlation in patients with 21-hydroxylase deficiency.

    Get PDF
    INTRODUCTION: 21-hydroxylase deficiency (21OHD) is the most common cause of congenital adrenal hyperplasia (CAH). However, patients with 21OHD manifest various phenotypes due to a wide-spectrum residual enzyme activity of different CYP21A2 mutations. METHODS: A total of 15 individuals from three unrelated families were included in this study. Target Capture-Based Deep Sequencing and Restriction Fragment Length Polymorphism was conducted on peripheral blood DNA of the three probands to identify potential mutations/deletions in CYP21A2; Sanger sequencing was conducted with the DNA from the family members of the probands. RESULTS: Dramatically different phenotypes were seen in the three probands of CAH with different compound heterozygous mutations in CYP21A2. Proband 1 manifested simple virilizing with mutations of 30-kb deletion/c.[188A\u3eT;518T\u3eA], the latter is a novel double mutants classified as SV associated mutation. Although both probands carry the same compound mutations [293-13C\u3eG]:[518T\u3eA], gonadal dysfunction and giant bilateral adrenal myelolipoma were diagnosed for proband 2 and proband 3, respectively. CONCLUSION: Both gender and mutations contribute to the phenotypes, and patients with the same compound mutations and gender could present with different phenotypes. Genetic analysis could help the etiologic diagnosis, especially for atypical 21OHD patients

    Ultra-short lifetime isomer studies from photonuclear reactions using laser-driven ultra-intense {\gamma}-ray

    Full text link
    Isomers, ubiquitous populations of relatively long-lived nuclear excited states, play a crucial role in nuclear physics. However, isomers with half-life times of several seconds or less barely had experimental cross section data due to the lack of a suitable measuring method. We report a method of online {\gamma} spectroscopy for ultra-short-lived isomers from photonuclear reactions using laser-driven ultra-intense {\gamma}-rays. The fastest time resolution can reach sub-ps level with {\gamma}-ray intensities >10^{19}/s ({\geqslant} 8 MeV). The ^{115}In({\gamma}, n)^{114m2}In reaction (T_{1/2} = 43.1 ms) was first measured in the high-energy region which shed light on the nuclear structure studies of In element. Simulations showed it would be an efficient way to study ^{229m}Th (T_{1/2} = 7 {\mu}s), which is believed to be the next generation of nuclear clock. This work offered a unique way of gaining insight into ultra-short lifetimes and promised an effective way to fill the gap in relevant experimental data

    Suppression of MUC1-Overexpressing Tumors by a Novel MUC1/CD3 Bispecific Antibody

    No full text
    Mucin1 (MUC1) is abnormally glycosylated and overexpressed in a variety of epithelial cancers and plays a critical role in tumor progression. MUC1 has received remark attention as an oncogenic molecule and is considered a valuable tumor target for immunotherapy, while many monoclonal antibodies (mAbs) targeting MUC1-positive cancers in clinical studies lack satisfactory results. It would be highly desirable to develop an effective therapy against MUC1-expressing cancers. In this study, we constructed a novel T cell-engaging bispecific antibody (BsAb) targeting MUC1 and CD3 with the Fab-ScFv-IgG format. A high quality of MUC1-CD3 BsAb can be acquired through a standard method. Our study suggested that this BsAb could specifically bind to MUC1- and CD3-positive cells and efficiently enhance T cell activation, cytokine release, and cytotoxicity. Furthermore, our study demonstrated that this BsAb could potently redirect T cells to eliminate MUC1-expressing tumor cells in vitro and significantly suppress MUC1-positive tumor growth in a xenograft mouse model. Thus, T cell-engaging MUC1/CD3 BsAb could be an effective therapeutic approach to combat MUC1-positive tumors and our MUC1/CD3 BsAb could be a promising candidate in clinical applications for the treatment of MUC1-positive cancer patients

    Research on Status and Characteristics of the Mastery of Students’ Mathematical Learning Strategies in Chinese Junior High Schools

    Get PDF
    AbstractThe Diagnostic Questionnaire of Junior High School Students’ Mathematical Learning Strategies was developed with high reliability and validity. This questionnaire was utilized to survey 872 students. It was found that: (a) the mastery of students’ mathematical learning strategies was not ideal, (b) low performing school students grasped mathematical learning strategies poorly especially in grade 7 and the inadequate mastery of metacognitive strategies led to low mathematical achievements in low performing schools, (c) girls owned better metacognitive strategies and help-seeking strategies than boys, (d) metacognitive strategies and specific cognitive strategies were good predictors of mathematical performance

    Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages

    No full text
    ABSTRACTThe gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target

    Machine-learning-assisted optimization of a single-atom coordination environment for accelerated fenton catalysis

    No full text
    Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min-1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe-N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe-N5 sites with exceptional Fenton activity (k = 0.158 min-1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.Ministry of Education (MOE)Submitted/Accepted versionThis work was supported by the National Natural Science Foundation of China (No. 22176147), the grant from the National Science Fund for Excellent Young Scholars (No. 21822607), Singapore Ministry of Education Tier 2 (No. MOE-T2EP10220-0005) and Tier 1 (RG8/20), China Scholarship Council (202106260199), the Fundamental Research Funds for Central Universities (No. 22120200178)

    A new nanoscale transdermal drug delivery system: oil body-linked oleosin-hEGF improves skin regeneration to accelerate wound healing

    No full text
    Abstract Background Epidermal growth factor (EGF) can promote cell proliferation as well as migration, which is feasible in tissue wound healing. Oil bodies have been exploited as an important platform to produce exogenous proteins. The exogenous proteins were expressed in oil bodies from plant seeds. The process can reduce purification steps, thereby significantly reducing the purification cost. Mostly, the diameter of oil body particle ranges between 1.0 and 1.5 µm in the safflower seeds, however, it reduces to 700–1000 nm in the transgenic safflower seeds. The significant reduction of particle size in transgenic seeds is extremely beneficial to skin absorption. Results The diameter of oil body in the transgenic safflower seeds was recorded in the range of 700–1000 nm. The smaller particle size improved their skin absorption. The expression level of oleosin-hEGF-hEGF in T3 transgenic seeds was highest at 69.32 mg/g of seeds. The oil body expressing oleosin-hEGF-hEGF had significant proliferative activity on NIH/3T3 cells and improved skin regeneration thereby accelerating wound healing in rats. The wound coverage rate exceeded 98% after treatment for 14 days with oil body expressing oleosin-hEGF-hEGF, while the saline without EGF group and wild type oil body group both showed less than 80%. The neonatal fibroblast and collagen were found to be increased in the safflower oil body expressing oleosin-hEGF-hEGF treatment group. TGF-β1, bFGF and VEGF were noted as important growth factors in the repair of cutaneous wounds. Their expression level increased after 4 and 7 day treatment, but decreased after 14 days. Therefore, it can promote skin regeneration to accelerate wounds healing. Conclusions The expression of oleosin-hEGF-hEGF in T3 transgenic seeds was 80.43 ng/μL oil body. It had significant proliferative activity on NIH/3T3 cells and improved skin regeneration to accelerate wound healing in rats. The expression process of TGF-β1, bFGF and VEGF increased at first and then gradually declined
    corecore