81 research outputs found

    In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    Get PDF
    BACKGROUND: Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. METHODS: This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. RESULTS: The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p < 0.05), but had no significant effect on quercetin-3-glucoside recovery (p > 0.05). Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p < 0.05), but had no effect on quercetin recovery from apple digestates. Lactase treatment also increased shallot quercetin bioavailability to the Caco-2 cells approximately 14-fold, and decreased shallot quercetin-4'-glucoside bioavailability 23-fold (p < 0.05). These Caco-2 cells had lactase activity similar to that expressed by a lactose intolerant human. CONCLUSIONS: The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods

    Should the Law Governing Maritime Areas in the Arctic Adapt to Changing Climatic Circumstances?

    Full text link
    The legal regime of the Arctic maritime areas has for a long time remained on the backburner of international norm creating activities. This can primarily be explained by the inhospitable climate which created natural barriers for human activities and imposed limits on the usefulness of the available technology.At present, however, climate change seems to be responsible for a marked heating up, not only of the mere physical environment of the Arctic, but also of the political tensions concerning the exact legal regime to be applied in the region.This chapter provides a close examination of the present-day legal status of the Arctic. Since almost all territorial claims have been settled in the area, the present contribution will only focus on the Arctic water areas with a special emphasis on navigation. Starting from what seems to have finally become a generally accepted legal cornerstone for appreciating the legal status of these waters, namely the 1982 United Nations Convention on the Law of the Sea, the chapter will first examine how climate change impacts on this legal regime. Subsequently, the vulnerability as well as the adaptive capacity of the 1982 Convention will be examined. Before drawing some conclusions, ways and means will be looked at for this existing legal system to better meet the new challenges that climate change poses for Arctic waters

    Toward the Integrated Marine Debris Observing System

    Get PDF
    Plastics and other artificial materials pose new risks to the health of the ocean. Anthropogenic debris travels across large distances and is ubiquitous in the water and on shorelines, yet, observations of its sources, composition, pathways, and distributions in the ocean are very sparse and inaccurate. Total amounts of plastics and other man-made debris in the ocean and on the shore, temporal trends in these amounts under exponentially increasing production, as well as degradation processes, vertical fluxes, and time scales are largely unknown. Present ocean circulation models are not able to accurately simulate drift of debris because of its complex hydrodynamics. In this paper we discuss the structure of the future integrated marine debris observing system (IMDOS)thatisrequiredtoprovidelong-termmonitoringofthestateofthisanthropogenic pollution and support operational activities to mitigate impacts on the ecosystem and on the safety of maritime activity. The proposed observing system integrates remote sensing and in situ observations. Also, models are used to optimize the design of the system and, in turn, they will be gradually improved using the products of the system. Remote sensing technologies will provide spatially coherent coverage and consistent surveying time series at local to global scale. Optical sensors, including high-resolution imaging, multi- and hyperspectral, fluorescence, and Raman technologies, as well as SAR will be used to measure different types of debris. They will be implemented in a variety of platforms, from hand-held tools to ship-, buoy-, aircraft-, and satellite-based sensors. A network of in situ observations, including reports from volunteers, citizen scientists and ships of opportunity, will be developed to provide data for calibration/validation of remote sensors and to monitor the spread of plastic pollution and other marine debris. IMDOS will interact with other observing systems monitoring physical, chemical, and biological processes in the ocean and on shorelines as well as the state of the ecosystem, maritime activities and safety, drift of sea ice, etc. The synthesized data will support innovative multi-disciplinary research and serve a diverse community of users

    Alternative splicing: the pledge, the turn, and the prestige

    Get PDF
    corecore