2,254 research outputs found
A comprehensive approach to the development of thinking skills
The development of independent and innovative thinking entails much more than merely the acquisition of a series of thinking skills. A comprehensive approach based upon inter-disciplinary cooperation between, among others, the disciplines of philosophy, education and pscychology is needed. In such a comprehensive approach to the development of thinking skills the following factors that have a bearing on the acquisition of thinking skills should be addressed:The cultivation of a positive disposition towards the development of thinking.The creation of conditions conducive to the development of thinking.The cultivation of virtues that will dispose a person towards good thinking.An understanding of what good thinking entails.The teaching and assessment of thinking skills.In this article, these various factors and their bearing on the development of thinking skills are explored. A general theoretical framework for the development of thinking skills is proposed that can and should be translated to specific domains of knowledge or to specific human enterprises
Positive-P and Wigner representations for quantum-optical systems with nonorthogonal modes
We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator
Quantum statistics of overlapping modes in open resonators
We study the quantum dynamics of optical fields in weakly confining
resonators with overlapping modes. Employing a recently developed quantization
scheme involving a discrete set of resonator modes and continua of external
modes we derive Langevin equations and a master equation for the resonator
modes. Langevin dynamics and the master equation are proved to be equivalent in
the Markovian limit. Our open-resonator dynamics may be used as a starting
point for a quantum theory of random lasers.Comment: 6 pages, corrected typo
The neutrophil: A key resourceful agent in immune-mediated vasculitis
The term “vasculitis” refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to “set the tone” for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease
AFM imaging of functionalized double-walled carbon nanotubes
We present a comparative study of several non-covalent approaches to disperse, debundle and noncovalently functionalize double-walled carbon nanotubes (DWNTs). We investigated the ability of bovine serum albumin (BSA), phospholipids grafted onto amine-terminated polyethylene glycol (PLPEG2000-NH2), as well as a combination thereof, to coat purified DWNTs. Topographical imaging with the atomic force microscope (AFM) was used to assess the coating of individual DWNTs and the degree of debundling and dispersion. Topographical images showed that functionalized DWNTs are better separated and less aggregated than pristine DWNTs and that the different coating methods differ in their abilities to successfully debundle and disperse DWNTs. Height profiles indicated an increase in the diameter of DWNTs depending on the functionalization method and revealed adsorption of single molecules onto the nanotubes. Biofunctionalization of the DWNT surface was achieved by coating DWNTs with biotinylated BSA, providing for biospecific binding of streptavidin in a simple incubation step. Finally, biotin-BSA-functionalized DWNTs were immobilized on an avidin layer via the specific avidin–biotin interaction
AFM imaging of functionalized carbon nanotubes on biological membranes
Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging
- …