1,253 research outputs found
In-situ Investigation of the Early Stage of TiO2 epitaxy on (001) SrTiO3
We report on a systematic study of the growth of epitaxial TiO2 films
deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single
crystals. By using in-situ reflection high energy electron diffraction, low
energy electron diffraction, x-ray photoemission spectroscopy and scanning
probe microscopy, we show that the stabilization of the anatase (001) phase is
preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a
thickness between 2 and 4 nm. The data demonstrate that the formation of this
phase is related to the activation of long range Sr migration from the
substrate to the film. The role of interface Gibbs energy minimization, as a
driving force for Sr diffusion, is discussed. Our results enrich the phase
diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient
SrTiO phase.Comment: 8 pages, 7 figure
Early handling and repeated cross-fostering have opposite effect on mouse emotionality
Early life events have a crucial role in programming the individual phenotype and exposure to traumatic experiences during infancy can increase later risk for a variety of neuropsychiatric conditions, including mood and anxiety disorders. Animal models of postnatal stress have been developed in rodents to explore molecular mechanisms responsible for the observed short and long lasting neurobiological effects of such manipulations. The main aim of this study was to compare the behavioral and hormonal phenotype of young and adult animals exposed to different postnatal treatments. Outbred mice were exposed to (i) the classical Handling protocol (H: 15 min-day of separation from the mother from day 1 to 14 of life) or to (ii) a Repeated Cross-Fostering protocol (RCF: adoption of litters from day 1 to 4 of life by different dams). Handled mice received more maternal care in infancy and showed the already described reduced emotionality at adulthood. Repeated cross fostered animals did not differ for maternal care received, but showed enhanced sensitivity to separation from the mother in infancy and altered respiratory response to 6% CO2 in breathing air in comparison with controls. Abnormal respiratory responses to hypercapnia are commonly found among humans with panic disorders (PD), and point to RCF-induced instability of the early environment as a valid developmental model for PD. The comparisons between short-and long-term effects of postnatal handling vs. RCF indicate that different types of early adversities are associated with different behavioral profiles, and evoke psychopathologies that can be distinguished according to the neurobiological systems disrupted by early-life manipulation
Recommended from our members
On the Parameterized Complexity of Red-Blue Points Separation
We study the following geometric separation problem: Given a set R of red points and a set B of blue points in the plane, find a minimum-size set of lines that separate R from B. We show that, in its full generality, parameterized by the number of lines k in the solution, the problem is unlikely to be solvable significantly faster than the bruteforce nO(k) -time algorithm, where n is the total number of points. Indeed, we show that an algorithm running in time f(k)ná”(k/log k) , for any computable function f, would disprove ETH. Our reduction crucially relies on selecting lines from a set with a large number of different slopes (i.e., this number is not a function of k). Conjecturing that the problem variant where the lines are required to be axis-parallel is FPT in the number of lines, we show the following preliminary result. Separating R from B with a minimum-size set of axis-parallel lines is FPT in the size of either set, and can be solved in time Oâ(9|B|) (assuming that B is the smaller set)
Letter graphs and geometric grid classes of permutations: characterization and recognition
In this paper, we reveal an intriguing relationship between two seemingly
unrelated notions: letter graphs and geometric grid classes of permutations. An
important property common for both of them is well-quasi-orderability,
implying, in a non-constructive way, a polynomial-time recognition of geometric
grid classes of permutations and -letter graphs for a fixed . However,
constructive algorithms are available only for . In this paper, we present
the first constructive polynomial-time algorithm for the recognition of
-letter graphs. It is based on a structural characterization of graphs in
this class.Comment: arXiv admin note: text overlap with arXiv:1108.6319 by other author
Time-approximation trade-offs for inapproximable problems
In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For Min Independent Dominating Set, Max Induced Path, Forest and Tree, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly rn/r. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For Max Minimal Vertex Cover we give a nontrivial âr-approximation in time 2n/r. We match this with a similarly tight result. We also give a log r-approximation for Min ATSP in time 2n/r and an r-approximation for Max Grundy Coloring in time rn/r. Furthermore, we show that Min Set Cover exhibits a curious behavior in this superpolynomial setting: for any ÎŽ > 0 it admits an mÎŽ-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail. © Ădouard Bonnet, Michael Lampis and Vangelis Th. Paschos; licensed under Creative Commons License CC-BY
Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite-coated surfaces
In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more efficacious than those chemically produced in all tested scenarios. Bio Se-NEMO produced by B. mycoides SelTE01 after 6 or 24 h of Na 2 SeO 3 exposure show the same effective antibiofilm activity towards both P. aeruginosa and S. aureus strains at 0.078 mg ml â1 (Bio Se-NEMO 6 ) and 0.3125 mg ml â1 (Bio Se-NEMO 24 ). Meanwhile, chemically synthesized SeNPs at the highest tested concentration (2.5 mg ml â1 ) have moderate antimicrobial activity. The confocal laser scanning micrographs demonstrate that the majority of the P. aeruginosa and S. aureus cells exposed to biogenic SeNPs within the biofilm are killed or eradicated. Bio Se-NEMO therefore displayed good antimicrobial activity towards HA-grown biofilms and planktonic cells, becoming possible candidates as new antimicrobials
Mesocosmâbased simulations to optimize a bioremediation strategy for the effective restoration of wildfireâimpacted soils contaminated with highâmolecularâweight hydrocarbons
Aims: We obtained four microbial isolates from soil exposed to forest fire and evaluated their potential bioremediation activity when combined with a biosurfactant-producing bacterial strain for the decontamination of wildfire-impacted soil polluted with high-molecular-weight (HMW) hydrocarbons. Methods and Results: We established mesocosm trials to compare three bioremediation strategies: natural attenuation, bioaugmentation and biostimulation. Chemical analysis, culture-dependent and culture-independent methods were used to evaluate the bioremediation efficiency and speciation of the microbial cenoses based on these approaches. After treatment for 90 days, bioaugmentation removed 75·2â75·9% of the HMW hydrocarbons, biostimulation removed 63·2â69·5% and natural attenuation removed ~22·5%. Hydrocarbon degradation was significantly enhanced in the mesocosm supplemented with the biosurfactant-producing bacterial strain after 20 and 50 days of treatment compared to the other bioremediation strategies. Conclusions: We found that the bioaugmentation approach was more effective than biostimulation and natural attenuation for the removal of HMW hydrocarbons from fire-impacted soil. Significance and Impact of the Study: Our study showed that micro-organisms from wildfire-impacted soil show significant potential for bioremediation, and that biosurfactant-producing bacterial strains can be combined with them as part of an effective bioremediation strategy
Charge density waves enhance the electronic noise of manganites
The transport and noise properties of Pr_{0.7}Ca_{0.3}MnO_{3} epitaxial thin
films in the temperature range from room temperature to 160 K are reported. It
is shown that both the broadband 1/f noise properties and the dependence of
resistance on electric field are consistent with the idea of a collective
electrical transport, as in the classical model of sliding charge density
waves. On the other hand, the observations cannot be reconciled with standard
models of charge ordering and charge melting. Methodologically, it is proposed
to consider noise-spectra analysis as a unique tool for the identification of
the transport mechanism in such highly correlated systems. On the basis of the
results, the electrical transport is envisaged as one of the most effective
ways to understand the nature of the insulating, charge-modulated ground states
in manganites.Comment: 6 two-column pages, 5 figure
Between Treewidth and Clique-width
Many hard graph problems can be solved efficiently when restricted to graphs
of bounded treewidth, and more generally to graphs of bounded clique-width. But
there is a price to be paid for this generality, exemplified by the four
problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that
are all FPT parameterized by treewidth but none of which can be FPT
parameterized by clique-width unless FPT = W[1], as shown by Fomin et al [7,
8]. We therefore seek a structural graph parameter that shares some of the
generality of clique-width without paying this price. Based on splits, branch
decompositions and the work of Vatshelle [18] on Maximum Matching-width, we
consider the graph parameter sm-width which lies between treewidth and
clique-width. Some graph classes of unbounded treewidth, like
distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph
Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized
by sm-width
- âŠ