327 research outputs found

    A planar multipole ion trap

    Full text link
    We report on the realisation of a chip-based multipole ion trap manufactured using micro-electromechanical systems (MEMS) technology. It provides ion confinement in an almost field-free volume between two planes of radiofrequency electrodes, deposited on glass substrates, which allows for optical access to the trap. An analytical model of the effective trapping potential is presented and compared with numerical calculations. Stable trapping of argon ions is achieved and a lifetime of 16s is measured. Electrostatic charging of the chip surfaces is studied and found to agree with a numerical estimate

    Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting

    Full text link
    We present the direct measurements of electric-dipole moments for 5P3/2nD5/25P_{3/2}\to nD_{5/2} transitions with 20<n<4820<n<48 for Rubidium atoms. The measurements were performed in an ultracold sample via observation of the Autler-Townes splitting in a three-level ladder scheme, commonly used for 2-photon excitation of Rydberg states. To the best of our knowledge, this is the first systematic measurement of the electric dipole moments for transitions from low excited states of rubidium to Rydberg states. Due to its simplicity and versatility, this method can be easily extended to other transitions and other atomic species with little constraints. Good agreement of the experimental results with theory proves the reliability of the measurement method.Comment: 12 pages, 6 figures; figure 6 replaced with correct versio

    Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source

    Full text link
    We have performed a systematic study of the Bremsstrahlung emission from the electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance Ion Source. The electronic spectral temperature and the product of ionic and electronic densities of the plasma are measured by analyzing the Bremsstrahlung spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the injected power. Within our uncertainty, we find an average temperature of ? 48 keV above 100W, with a weak dependency on the injected power and gas composition. Charge state distributions of extracted ion beams have been determined as well, providing a way to disentangle the ionic density from the electronic density. Moreover X-ray emission from highly charged argon ions in the plasma has been observed with a high-resolution mosaic crystal spectrometer, demonstrating the feasibility for high-precision measurements of transition energies of highly charged ions, in particular of the magnetic dipole (M1) transition of He-like of argon ions

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    Get PDF
    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imaging. The observations reveal the emergence of spatially ordered excitation patterns in the high-density components of the prepared many-body state. They have random orientation, but well defined geometry, forming mesoscopic crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum simulations of long-range interacting quantum magnets.Comment: 10 pages, 7 figure

    Character of Christ: A Proposal for Excellence in Christian Character Education

    Get PDF
    Moral teaching programs, such as character education, have been implemented nationwide in order to curb the growing trend of violence, abuse, and moral relativism within schools, both public and private. These programs represent a variety of moral training philosophies, and current research is revealing some best practices within the field. However, these programs do little to address the needs of distinctively Christian educators who seek to train their students toward the character of Jesus Christ. The research in this study promotes the development of a curriculum to meet this need. The following research indicates that character education\u27s premise and many of its practices are worthy of consideration when developing a Christian character curriculum. However, the foundation of the character traits promoted by a Christian character curriculum must not be based on the consensus of a pluralistic society. The foundation must be established solely on the person of Christ. Best practices within the field of character education are emerging through current research. These practices and the theories behind them are also examined in light of the development of a Christian character curriculum. Recommendations and implications for a Christian character curriculum are made in both theory and practice

    Testing quantum electrodynamics in extreme fields using helium-like uranium

    Get PDF
    Funding Information: The results presented here are based on the experiment E125, which is performed at the infrastructure ESR at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, in the framework of FAIR Phase-0 and SPARC collaboration. This work is supported by the Horizon 2020 research and innovation programme of the European Union and grant agreement no. 6544002. We acknowledge the support provided by ErUM FSP T05-‘Aufbau von APPA bei FAIR’ (BMBF nos. 05P19SJFAA and 05P21SJFA1). We thank A. Malyshev, V. Shabaev and Y. Kozhedub for providing previously unknown theoretical results and also for the discussions on theoretical uncertainties. M.T. thanks the ExtreMe Matter Institute EMMI and Alexander von Humboldt Foundation for their support for the stays at the GSI for the preparation and data acquisition. L.D. acknowledges funding support from the Initiative Physique des Infinis (IPI), a research training programme of the Idex SUPER at Sorbonne Université. Funding Information: The results presented here are based on the experiment E125, which is performed at the infrastructure ESR at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, in the framework of FAIR Phase-0 and SPARC collaboration. This work is supported by the Horizon 2020 research and innovation programme of the European Union and grant agreement no. 6544002. We acknowledge the support provided by ErUM FSP T05-‘Aufbau von APPA bei FAIR’ (BMBF nos. 05P19SJFAA and 05P21SJFA1). We thank A. Malyshev, V. Shabaev and Y. Kozhedub for providing previously unknown theoretical results and also for the discussions on theoretical uncertainties. M.T. thanks the ExtreMe Matter Institute EMMI and Alexander von Humboldt Foundation for their support for the stays at the GSI for the preparation and data acquisition. L.D. acknowledges funding support from the Initiative Physique des Infinis (IPI), a research training programme of the Idex SUPER at Sorbonne Université. Publisher Copyright: © 2024, The Author(s).Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions 1–6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron–electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s 1/22p 3/2 J = 2 → 1s 1/22s 1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron–electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.publishersversionpublishe

    The Prion Protein Ligand, Stress-Inducible Phosphoprotein 1, Regulates Amyloid-beta Oligomer Toxicity

    Get PDF
    In Alzheimer\u27s disease (AD), soluble amyloid-beta oligomers (A beta Os) trigger neurotoxic signaling, at least partially, via the cellular prion protein (PrPC). However, it is unknown whether other ligands of PrPC can regulate this potentially toxic interaction. Stress-inducible phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrPC in the vicinity of the A beta O binding site to protect neurons against toxic stimuli. Here, we investigated a potential role of STI1 in A beta O toxicity. We confirmed the specific binding of A beta Os and STI1 to the PrP and showed that STI1 efficiently inhibited A beta O binding to PrP in vitro (IC50 of similar to 70 nM) and also decreased A beta O binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented A beta O-induced synaptic loss and neuronal death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-haploinsufficient neurons were more sensitive to A beta O-induced cell death and could be rescued by treatment with recombinant STI1. Noteworthy, both A beta O binding to PrPC and PrPC-dependent A beta O toxicity were inhibited by TPR2A, the PrPC-interacting domain of STI1. Additionally, PrPC-STI1 engagement activated alpha 7 nicotinic acetylcholine receptors, which participated in neuroprotection against A beta O-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrPC ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset A beta O-induced toxicity

    On the analysis of the contact angle for impacting droplets using a polynomial fitting approach

    Get PDF
    ractical considerations on the measurement of the dynamic contact angle and the spreading diameter of impacting droplets are discussed in this paper. The contact angle of a liquid is commonly obtained either by a polynomial or a linear fitting to the droplet profile around the triple phase point. Previous works have focused on quasi-static or sessile droplets, or in cases where inertia does not play a major role on the contact angle dynamics. Here, we study the effect of droplet shape, the order of the fitting polynomial, and the fitting domain, on the measurement of the contact angle on various stages following droplet impact where the contact line is moving. Our results, presented in terms of the optical resolution and the droplet size, show that a quadratic fitting provides the most consistent results for a range of various droplet shapes. As expected, our results show that contact angle values are less sensitive to the fitting conditions for the cases where the droplet can be approximated to a spherical cap. Our experimental conditions include impact events with liquid droplets of different sizes and viscosities on various substrates. In addition, validating past works, our results show that the maximum spreading diameter can be parameterised by the Weber number and the rapidly advancing contact angle

    Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus

    Get PDF
    Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance
    corecore