60 research outputs found

    Calculation of the energy spectrum of a two-electron spherical quantum dot

    Full text link
    We study the energy spectrum of the two-electron spherical parabolic quantum dot using the exact Schroedinger, the Hartree-Fock, and the Kohn-Sham equations. The results obtained by applying the shifted-1/N method are compared with those obtained by using an accurate numerical technique, showing that the relative error is reasonably small, although the first method consistently underestimates the correct values. The approximate ground-state Hartree-Fock and local-density Kohn-Sham energies, estimated using the shifted-1/N method, are compared with accurate numerical self-consistent solutions. We make some perturbative analyses of the exact energy in terms of the confinement strength, and we propose some interpolation formulae. Similar analysis is made for both mean-field approximations and interpolation formulae are also proposed for these exchange-only ground-state cases.Comment: 18 pages, LaTeX, 2 figures-ep

    Magnetic field dependence of the exciton energy in a quantum disk

    Full text link
    The groundstate energy and binding energy of an exciton, confined in a^M quantum disk, are calculated as a function of an external magnetic field. The confinement potential is a hard wall of finite height. The diamagnetic shift is investigated for magnetic fields up to 40TT. Our results are applied to InyAl1−yAs/AlxGa1−xAsIn_{y}Al_{1-y}As/Al_{x}Ga_{1-x}As self-assembled quantum dots and very good agreement with experiments is obtained. Furthermore, we investigated the influence of the dot size on the diamagnetic shift by changing the disk radius. The exciton excited states are found as a function of the magnetic field. The relative angular momentum is not a quantum number and changes with the magnetic field strength.Comment: 10 pages, 17 figure

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∼10 μm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    Automatic lumen segmentation from intravascular OCT images

    No full text

    Monitoring austenitic grain growth kinetics by laser-ultrasonics

    No full text
    Peer reviewed: YesNRC publication: Ye

    Monitoring microstructure evolution of nickel at high temperature

    No full text
    Laser ultrasonics is used to monitor the microstructure evolution of commercial pure nickel from room temperature up to 1000 \ub0C. The objective is to characterize the response of ultrasonic velocity, attenuation and absorption to recovery/recrystallization and grain growth. These parameters are measured during the applied thermal cycle and for different magnetic fields. Below the Curie temperature, the annealed microstructure shows strong magnetoelastic effects. Above the Curie temperature, the ultrasonic attenuation is dominated by grain scattering, allowing the characterization of grain growth. A relationship between the grain size and attenuation at high temperatures is established.Peer reviewed: YesNRC publication: Ye

    Laser-ultrasonics, microstructure, magnetism and NDE

    No full text
    Peer reviewed: YesNRC publication: Ye

    Real-time control of angioplasty balloon inflation based on feedback from intravascular optical coherence tomography: Experimental validation on an excised heart and a beating heart model

    No full text
    We report on real-time control of balloon inflation inside porcine arteries. In the first step, experiments were done in a coronary artery of an excised heart. In the second step, experiments were done in a beating heart setup providing conditions very close to in vivo conditions without the complications. A programmable syringe pump was used to inflate a compliant balloon in arteries, while intravascular optical coherence tomography (IVOCT) monitoring was performed. In a feedback loop, IVOCT images were processed to provide the balloon diameter values in real time to control the pump action in order to achieve a target diameter. In different experiments, various flow rates and target diameters were used. In the excised heart experiment, there was good convergence to target diameters resulting in a satisfactory balloon inflation control. In the beating heart experiment, there were oscillations in the diameter values due to cyclic arterial contractions. In these experiments, the control system maintained diameter averages satisfactorily close to predetermined target values. Real-time control of balloon inflation could not only provide a safer outcome for angioplasty procedures, but could also provide additional information for diagnostics since it implicitly provides information about the artery response to the inflation process. \ua9 1964-2012 IEEE.Peer reviewed: YesNRC publication: Ye
    • …
    corecore