151 research outputs found

    Extended homologous series of Sn-O layered systems: a first-principles study

    Full text link
    Apart from the most studied tin-oxide compounds, SnO and SnO2, intermediate states have been claimed to exist for more than a hundred years. In addition to the known homologous series (Seko et al., Phys. Rev. Lett. 100, 045702 (2008)), we here predict the existence of several new compounds with an O concentration between 50 % (SnO) and 67 % (SnO2). All these intermediate compounds are constructed from removing one or more (101) oxygen layers of SnO2. Since the van der Waals (vdW) interaction is known to be important for the Sn-Sn interlayer distances, we use a vdW-corrected functional, and compare these results with results obtained with PBE and hybrid functionals. We present the electronic properties of the intermediate structures and we observe a decrease of the band gap when (i) the O concentration increases and (ii) more SnO-like units are present for a given concentration. The contribution of the different atoms to the valence and conduction band is also investigated.Comment: 8 page

    Exceeding the Shockley-Queisser limit within the detailed balance framework

    Full text link
    The Shockley-Queisser limit is one of the most fundamental results in the field of photovoltaics. Based on the principle of detailed balance, it defines an upper limit for a single junction solar cell that uses an absorber material with a specific band gap. Although methods exist that allow a solar cell to exceed the Shockley-Queisser limit, here we show that it is possible to exceed the Shockley-Queisser limit without considering any of these additions. Merely by introducing an absorptivity that does not assume that every photon with an energy above the band gap is absorbed, efficiencies above the Shockley-Queisser limit are obtained. This is related to the fact that assuming optimal absorption properties also maximizes the recombination current within the detailed balance approach. We conclude that considering a finite thickness for the absorber layer allows the efficiency to exceed the Shockley-Queisser limit, and that this is more likely to occur for materials with small band gaps.Comment: 6 pages, 3 figure

    The decoupled DFT-12\frac{1}{2} method for defect excitation energies

    Full text link
    The DFT-12\frac{1}{2} method is a band gap correction with GW precision at a DFT computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels are similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-12\frac{1}{2} method for defects.Comment: 10 pages, 9 figures, accepted by Physical Review

    Accelerated Discovery of Efficient Solar-cell Materials using Quantum and Machine-learning Methods

    Full text link
    Solar-energy plays an important role in solving serious environmental problems and meeting high-energy demand. However, the lack of suitable materials hinders further progress of this technology. Here, we present the largest inorganic solar-cell material search to date using density functional theory (DFT) and machine-learning approaches. We calculated the spectroscopic limited maximum efficiency (SLME) using Tran-Blaha modified Becke-Johnson potential for 5097 non-metallic materials and identified 1997 candidates with an SLME higher than 10%, including 934 candidates with suitable convex-hull stability and effective carrier mass. Screening for 2D-layered cases, we found 58 potential materials and performed G0W0 calculations on a subset to estimate the prediction-uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine learning model to pre-screen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/ and https://github.com/usnistgov/jarvis

    Charge localization, frustration relief, and spin-orbit coupling in U3_3O8_8

    Full text link
    Research efforts on the low temperature magnetic order and electronic properties of U3_3O8_8 have been inconclusive so far. Reinterpreting neutron scattering results, we use group representation theory to show that the ground state presents collinear out-of-plane magnetic moments, with antiferromagnetic coupling both in-layer and between layers. Charge localization relieves the initial geometric frustration, generating a slightly distorted honeycomb sublattice with N\'eel order. We show, furthermore, that spin-orbit coupling has a giant effect on the conduction band states and band gap value. Our results allow a reinterpretation of recent optical absorption measurements.Comment: 12 pages, including supplemental materia

    Effect of Zinc Oxide Modification by Indium Oxide on Microstructure, Adsorbed Surface Species, and Sensitivity to CO

    Get PDF
    Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1–7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work
    • …
    corecore