4 research outputs found

    Theory of Extrinsic and Intrinsic Tunnelling in Cuprate Superconductors

    Full text link
    A theory capable of explaining intrinsic and extrinsic tunnelling conductance in underdoped cuprates has been devised that accounts for the existence of two energy scales, their temperature and doping dependencies. The asymmetry and inhomogeneity seen in extrinsic (normal metal - superconductor (NS)) tunnelling and the normal-state gapped intrinsic (SS) conductance is explained, as well as the superconducting gap and normal state pseudogap and the temperature dependence of the full gap.Comment: 14 pages, 10 figures, misprints correcte

    Order and quantum phase transitions in the cuprate superconductors

    Full text link
    It is now widely accepted that the cuprate superconductors are characterized by the same long-range order as that present in the Bardeen-Cooper-Schrieffer (BCS) theory: that associated with the condensation of Cooper pairs. We argue that many physical properties of the cuprates require interplay with additional order parameters associated with a proximate Mott insulator. We review a classification of Mott insulators in two dimensions, and contend that the experimental evidence so far shows that the class appropriate to the cuprates has collinear spin correlations, bond order, and confinement of neutral, spin S=1/2 excitations. Proximity to second-order quantum phase transitions associated with these orders, and with the pairing order of BCS, has led to systematic predictions for many physical properties. We use this context to review the results of recent neutron scattering, fluxoid detection, nuclear magnetic resonance, and scanning tunnelling microscopy experiments.Comment: 20 pages, 13 figures, non-technical review article; some technical details in the companion review cond-mat/0211027; (v3) added refs; (v4) numerous improvements thanks to the referees, to appear in Reviews of Modern Physics; (v6) final version as publishe
    corecore