290 research outputs found
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
AIMS/HYPOTHESIS: Loss of circadian clocks from all tissues causes defective glucose homeostasis as well as loss of feeding and activity rhythms. Little is known about peripheral tissue clocks, so we tested the hypothesis that an intrinsic circadian clock of the pancreas is important for glucose homeostasis. METHODS: We monitored real-time bioluminescence of pancreas explants from circadian reporter mice and examined clock gene expression in beta cells by immunohistochemistry and in situ hybridisation. We generated mice selectively lacking the essential clock gene Bmal1 (also known as Arntl) in the pancreas and tested mutant mice and littermate controls for glucose and insulin tolerance, insulin production and behaviour. We examined islets isolated from mutants and littermate controls for glucose-stimulated insulin secretion and total insulin content. RESULTS: Pancreas explants exhibited robust circadian rhythms. Clock genes Bmal1 and Per1 were expressed in beta cells. Despite normal activity and feeding behaviour, mutant mice lacking clock function in the pancreas had severe glucose intolerance and defective insulin production; their isolated pancreatic islets had defective glucose-stimulated insulin secretion, but normal total insulin content. CONCLUSIONS/INTERPRETATION: The mouse pancreas has an autonomous clock function and beta cells are very likely to be one of the pancreatic cell types possessing an intrinsic clock. The Bmal1 circadian clock gene is required in the pancreas, probably in beta cells, for normal insulin secretion and glucose homeostasis. Our results provide evidence for a previously unrecognised molecular regulator of pancreatic glucose-sensing and/or insulin secretion
Serotonin and corticosterone rhythms in mice exposed to cigarette smoke and in patients with COPD:implication for COPD-associated neuropathogenesis
The circadian timing system controls daily rhythms of physiology and behavior, and disruption of clock function can trigger stressful life events. Daily exposure to cigarette smoke (CS) can lead to alteration in diverse biological and physiological processes. Smoking is associated with mood disorders, including depression and anxiety. Patients with chronic obstructive pulmonary disease (COPD) have abnormal circadian rhythms, reflected by daily changes in respiratory symptoms and lung function. Corticosterone (CORT) is an adrenal steroid that plays a considerable role in stress and anti-inflammatory responses. Serotonin (5-hydroxytryptamine; 5HT) is a neurohormone, which plays a role in sleep/wake regulation and affective disorders. Secretion of stress hormones (CORT and 5HT) is under the control of the circadian clock in the suprachiasmatic nucleus. Since smoking is a contributing factor in the development of COPD, we hypothesize that CS can affect circadian rhythms of CORT and 5HT secretion leading to sleep and mood disorders in smokers and patients with COPD. We measured the daily rhythms of plasma CORT and 5HT in mice following acute (3 d), sub-chronic (10 d) or chronic (6 mo) CS exposure and in plasma from non-smokers, smokers and patients with COPD. Acute and chronic CS exposure affected both the timing (peak phase) and amplitude of the daily rhythm of plasma CORT and 5HT in mice. Acute CS appeared to have subtle time-dependent effects on CORT levels but more pronounced effects on 5HT. As compared with CORT, plasma 5HT was slightly elevated in smokers but was reduced in patients with COPD. Thus, the effects of CS on plasma 5HT were consistent between mice and patients with COPD. Together, these data reveal a significant impact of CS exposure on rhythms of stress hormone secretion and subsequent detrimental effects on cognitive function, depression-like behavior, mood/anxiety and sleep quality in smokers and patients with COPD
Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.
Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism
Differential Contribution of Rod and Cone Circadian Clocks in Driving Retinal Melatonin Rhythms in Xenopus
Background: Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release. Methodology/Principal Findings: We selectively disrupted circadian clock function in either the rod or cone photoreceptor cells by generating transgenic Xenopus tadpoles expressing a dominant-negative CLOCK (XCLDQ) under the control of a rod or cone-specific promoter. Eyecup culture and continuous melatonin measurement revealed that circadian rhythms of melatonin release were abolished in a majority of the rod-specific XCLDQ transgenic tadpoles, although the percentage of arrhythmia was lower than that of transgenic tadpole eyes expressing XCLDQ in both rods and cones. In contrast, whereas a higher percentage of arrhythmia was observed in the eyes of the cone-specific XCLDQ transgenic tadpoles compare to wildtype counterparts, the rate was significantly lower than in rod-specific transgenics. The levels of the transgene expression were comparable between these two different types of transgenics. In addition, the average overall melatonin levels were not changed in the arrhythmic eyes, suggesting that CLOCK does not affect absolute levels of melatonin, only its temporal expression pattern. Conclusions/Significance: These results suggest that although the Xenopus retina is made up of approximately equa
Nocturnin Expression Is Induced by Fasting in the White Adipose Tissue of Restricted Fed Mice
The relationship between circadian clocks and metabolism is intimate and complex and a number of recent studies have begun to reveal previously unknown effects of food and its temporal availability on the clock and the rhythmic transcriptome of peripheral tissues. Nocturnin, a circadian deadenylase, is expressed rhythmically in a wide variety of tissues, but we report here that Nocturnin expression is arrhythmic in epididymal white adipose tissue (eWAT) of mice housed in 12∶12 LD with ad libitum access to food. However, Nocturnin expression becomes rhythmic in eWAT of mice placed on restricted feeding. We show here that Nocturnin's rhythmic expression pattern is not dependent upon feeding, nor is it acutely induced by feeding in the liver or eWAT of ad libitum fed mice. However, Nocturnin is acutely induced by the absence of the expected meal in eWAT of restricted fed mice. A rise in cAMP levels also induces Nocturnin expression, suggesting that Nocturnin's induction in eWAT by fasting is likely mediated through the same pathways that activate lipolysis. Therefore, this suggests that Nocturnin plays a role in linking nutrient sensing by the circadian clock to lipid mobilization in the adipocytes
The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules
The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues
Circadian Rhythms of Fetal Liver Transcription Persist in the Absence of Canonical Circadian Clock Gene Expression Rhythms In Vivo
The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture). To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny
Daily Rhythms of Plasma Melatonin, but Not Plasma Leptin or Leptin mRNA, Vary between Lean, Obese and Type 2 Diabetic Men
Melatonin and leptin exhibit daily rhythms that may contribute towards changes in metabolic physiology. It remains unclear, however, whether this rhythmicity is altered in obesity or type 2 diabetes (T2DM). We tested the hypothesis that 24-hour profiles of melatonin, leptin and leptin mRNA are altered by metabolic status in laboratory conditions. Men between 45–65 years old were recruited into lean, obese-non-diabetic or obese-T2DM groups. Volunteers followed strict sleep-wake and dietary regimes for 1 week before the laboratory study. They were then maintained in controlled light-dark conditions, semi-recumbent posture and fed hourly iso-energetic drinks during wake periods. Hourly blood samples were collected for hormone analysis. Subcutaneous adipose biopsies were collected 6-hourly for gene expression analysis. Although there was no effect of subject group on the timing of dim light melatonin onset (DLMO), nocturnal plasma melatonin concentration was significantly higher in obese-non-diabetic subjects compared to weight-matched T2DM subjects (p<0.01) and lean controls (p<0.05). Two T2DM subjects failed to produce any detectable melatonin, although did exhibit plasma cortisol rhythms comparable to others in the group. Consistent with the literature, there was a significant (p<0.001) effect of subject group on absolute plasma leptin concentration and, when expressed relative to an individual’s 24-hour mean, plasma leptin showed significant (p<0.001) diurnal variation. However, there was no difference in amplitude or timing of leptin rhythms between experimental groups. There was also no significant effect of time on leptin mRNA expression. Despite an overall effect (p<0.05) of experimental group, post-hoc analysis revealed no significant pair-wise effects of group on leptin mRNA expression. Altered plasma melatonin rhythms in weight-matched T2DM and non-diabetic individuals supports a possible role of melatonin in T2DM aetiology. However, neither obesity nor T2DM changed 24-hour rhythms of plasma leptin relative to cycle mean, or expression of subcutaneous adipose leptin gene expression, compared with lean subjects
AMPK Regulates Circadian Rhythms in a Tissue- and Isoform-Specific Manner
AMP protein kinase (AMPK) plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo.THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD) cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT) activity, which converts nicotinamide (NAM) to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells.This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners
- …