37 research outputs found
Formation versus destruction: the evolution of the star cluster population in galaxy mergers
(Abridged) Interacting galaxies are well-known for their high star formation
rates and rich star cluster populations, but the rapidly changing tidal field
can also efficiently destroy clusters. We use numerical simulations of merging
disc galaxies to investigate which mechanism dominates. The simulations include
a model for the formation and dynamical disruption of the entire star cluster
population. We find that the dynamical heating of clusters by tidal shocks is
about an order of magnitude higher in interacting galaxies than in isolated
galaxies. This is driven by the increased gas density, and is sufficient to
destroy star clusters at a higher rate than new clusters are formed: the total
number of clusters in the merger remnant is 2-50% of the amount in the
progenitor discs, with low-mass clusters being disrupted preferentially. By
adopting observationally motivated selection criteria, we find that the
observed surplus of star clusters in nearby merging galaxies is caused by the
bias to detect young, massive clusters. We provide a general expression for the
survival fraction of clusters, which increases with the gas depletion
time-scale. Due to the preferential disruption of low-mass clusters, the mass
distribution of the surviving star clusters in a merger remnant develops a peak
at a mass of about 10^3 Msun, which evolves to higher masses at a rate of
0.3-0.4 dex per Gyr. The peak mass initially depends weakly on the
galactocentric radius, but this correlation disappears as the system ages. We
discuss the similarities between the cluster populations of the simulated
merger remnants and (young) globular cluster systems. Our results suggest that
the combination of cluster formation and destruction should be widespread in
the dense star-forming environments at high redshifts, which could provide a
natural origin to present-day globular cluster systems.Comment: 15 pages, 9 figures, 2 tables; Accepted for publication in MNRAS. A
movie of the full time sequence in Figure 1 can be found at
http://www.mpa-garching.mpg.de/~diederik/1m11clusters.htm
A Spitzer Space Telescope far-infrared spectral atlas of compact sources in the Magellanic Clouds. I. The Large Magellanic Cloud
[abridged] We present 52-93 micron spectra obtained with Spitzer in the
MIPS-SED mode, of a representative sample of luminous compact far-IR sources in
the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe,
RCrB-type star HV2671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e]
stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue
Variable R71, supernova remnant N49, a large number of young stellar objects,
compact HII regions and molecular cores, and a background galaxy (z~0.175). We
use the spectra to constrain the presence and temperature of cold dust and the
excitation conditions and shocks within the neutral and ionized gas, in the
circumstellar environments and interfaces with the surrounding ISM. Evolved
stars, including LBV R71, lack cold dust except in some cases where we argue
that this is swept-up ISM. This leads to an estimate of the duration of the
prolific dust-producing phase ("superwind") of several thousand years for both
RSGs and massive AGB stars, with a similar fractional mass loss experienced
despite the different masses. We tentatively detect line emission from neutral
oxygen in the extreme RSG WOHG064, with implications for the wind driving. In
N49, the shock between the supernova ejecta and ISM is revealed by its strong
[OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of
ISM dust was swept up. Some of the compact HII regions display pronounced
[OIII] 88-micron emission. The efficiency of photo-electric heating in the
interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We
confirm earlier indications of a low nitrogen content in the LMC. Evidence for
solid state emission features is found in both young and evolved object; some
of the YSOs are found to contain crystalline water ice.Comment: Accepted for publication in The Astronomical Journal. This paper
accompanies the Summer 2009 SAGE-Spec release of 48 MIPS-SED spectra, but
uses improved spectrum extraction. (Fig. 2 reduced resolution because of
arXiv limit.
How does a low-mass cut-off in the stellar IMF affect the evolution of young star clusters?
We investigate how different stellar initial mass functions (IMFs) can affect the mass-loss and survival of star clusters. We find that IMFs with radically different low-mass cut-offs (between 0.1 and 2 M⊙) do not change cluster destruction time-scales as much as might be expected. Unsurprisingly, we find that clusters with more high-mass stars lose relatively more mass through stellar evolution, but the response to this mass-loss is to expand and hence significantly slow their dynamical evolution. We also argue that it is very difficult, if not impossible, to have clusters with different IMFs that are initially ‘the same’, since the mass, radius and relaxation times depend on each other and on the IMF in a complex way. We conclude that changing the IMF to be biased towards more massive stars does speed up mass-loss and dissolution, but that it is not as dramatic as might be thought
Light-Induced Energetic Decoupling as a Mechanism for Phycobilisome-Related Energy Dissipation in Red Algae: A Single Molecule Study
BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes) as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE) and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed
Patterns of Multimorbidity in the Aged Population. Results from the KORA-Age Study
Multimorbidity is a common problem in aged populations with a wide range of individual and societal consequences. The objective of the study was to explore patterns of comorbidity and multimorbidity in an elderly population using different analytical approaches. Data were gathered from the population-based KORA-Age project, which included 4,127 persons aged 65–94 years living in the city of Augsburg and its two surrounding counties in Southern Germany. Information on the presence of 13 chronic conditions was collected in a standardized telephone interview and a self-administered questionnaire. Patterns of comorbidity and multimorbidity were analyzed using prevalence figures, logistic regression models and exploratory tetrachoric factor analysis. The prevalence of multimorbidity (≥2 diseases) was 58.6% in the total sample. Hypertension and diabetes (Odds Ratio [OR] 2.95, 99.58% confidence interval [CI] [2.19–3.96]), as well as hypertension and stroke (OR 2.00, 99.58% CI [1.26–3.16]) most often occurred in combination. This association was independent of age, sex and the presence of other conditions. Using factor analysis, we identified four patterns of multimorbidity: the first pattern includes cardiovascular and metabolic diseases, the second includes joint, liver, lung and eye diseases, the third covers mental and neurologic diseases and the fourth pattern includes gastrointestinal diseases and cancer. 44% of the persons were assigned to at least one of the four multimorbidity patterns; 14% could be assigned to both the cardiovascular/metabolic and the joint/liver/lung/eye pattern. Further common pairs were the mental/neurologic pattern combined with the cardiovascular/metabolic pattern (7.2%) or the joint/liver/lung/eye pattern (5.3%), respectively. Our results confirmed the existence of co-occurrence of certain diseases in elderly persons, which is not caused by chance. Some of the identified patterns of multimorbidity and their overlap may indicate common underlying pathological mechanisms
Cortical thickness and resting-state cardiac function across the lifespan: a cross-sectional pooled mega analysis
Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS – or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between cortical thickness and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research
Militär humanitär? Deutsche Außenpolitik zwischen Krieg und Frieden. Diskussion mit Karl Lamers, Herfried Münkler, Hans-Christian Ströbele
Textdokumentation zur Veranstaltung der Osnabrücker Friedensgespräche am 14. Mai 200