462 research outputs found

    Two-photon double ionization of helium in the region of photon energies 42-50 eV

    Get PDF
    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 42 to 50 eV. Our computational procedure relies on a numerical solution of the time-dependent Schr\"odinger equation on a square-integrable basis and subsequent projection of this solution on a set of final states describing two electrons in continuum. Close to the threshold, we reproduce results previously known from the literature. The region 47-50 eV seems to have been previously unexplored. Our results suggest that TICS, as a function of the photon energy, grows monotonously in the region 42-50 eV. We also present fully resolved triple differential cross sections for selected photon energies.Comment: 12 pages, 3 figure

    Evaluation of Compton scattering sequence reconstruction algorithms for a portable position sensitive radioactivity detector based on pixelated Cd(Zn)Te crystals

    Full text link
    We present extensive simulation studies on the performance of algorithms for the Compton sequence reconstruction used for the development of a portable spectroscopic instrument (COCAE), with the capability to localize and identify radioactive sources, by exploiting the Compton scattering imaging. Various Compton Sequence reconstruction algorithms have been compared using a large number of simulated events. These algorithms are based on Compton kinematics, as well as on statistical test criteria that exploit the redundant information of events having two or more photon interactions in the active detector's volume. The efficiency of the best performing technique is estimated for a wide range of incident gamma-ray photons emitted from point-like gamma sources.Comment: 16 pages, 17 figure

    Assessment of the degree of non-Markovianity of open quantum systems and the necessary generalization of quantum state distance measures

    Full text link
    We provide a quantitative evaluation of the degree of non-Markovianity (DNM) for an XX chain of interacting qubits with one end coupled to a reservoir. The DNM is assessed in terms of various quantum state distance (QSD) measures and various cases of non-Markovian spectral densities. Our approach is based on the construction of the density matrix of the open chain, without the necessity of a master equation. For the quantification of the DNM we calculate the dynamics of the QSD measures between the Markovian-damped and various types of non-Markovian-damped cases. Since in the literature several QSD measures, appear in forms that imply trace preserving density matrices, we introduced appropriate modifications so as to render them applicable to open systems with damped traces. Our results produce remarkable consistency between the various QSD measures. They also reveal a subtle and potentially useful interplay between qubit-qubit interaction and non-Markovian damping. Our calculations have also uncovered a surprisingly dramatic slowing-down of dissipation by the squared Lorentzian reservoir.Comment: 13 pages, 5 figure

    Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths

    Full text link
    We study the dynamics of the Potassium atom in the mid-infrared, high intensity, short laser pulse regime. We ascertain numerical convergence by comparing the results obtained by the direct expansion of the time-dependent Schroedinger equation onto B-Splines, to those obtained by the eigenbasis expansion method. We present ionization curves in the 12-, 13-, and 14-photon ionization range for Potassium. The ionization curve of a scaled system, namely Hydrogen starting from the 2s, is compared to the 12-photon results. In the 13-photon regime, a dynamic resonance is found and analyzed in some detail. The results for all wavelengths and intensities, including Hydrogen, display a clear plateau in the peak-heights of the low energy part of the Above Threshold Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for publication in Phys. Rev A. Improved figures, language and punctuation, and made minor corrections. We also added a comparison to the ADK theor

    Tunable photonic band gaps with coherently driven atoms in optical lattices

    Full text link
    Optical lattice loaded with cold atoms can exhibit a tunable photonic band gap for a weak probe field under the conditions of electromagnetically induced transparency. This system possesses a number of advantageous properties, including reduced relaxation of Raman coherence and the associated probe absorption, and simultaneous enhancement of the index modulation and the resulting reflectivity of the medium. This flexible system has a potential to serve as a testbed of various designs for the linear and nonlinear photonic band gap materials at a very low light level and can be employed for realizing deterministic entanglement between weak quantum fields

    Simulated Performance Of Algorithms For The Localization Of Radioactive Sources From A Position Sensitive Radiation Detecting System (COCAE)

    Full text link
    Simulation studies are presented regarding the performance of algorithms that localize point-like radioactive sources detected by a position sensitive portable radiation instrument (COCAE). The source direction is estimated by using the List Mode Maximum Likelihood Expectation Maximization (LM-ML-EM) imaging algorithm. Furthermore, the source-to-detector distance is evaluated by three different algorithms based on the photo-peak count information of each detecting layer, on the quality of the reconstructed source image as well as on the triangulation method. These algorithms have been tested on a large number of simulated photons in a wide energy range (from 200keV up to 2MeV) emitted by point-like radioactive sources located at different orientation and source-to-detector distances.Comment: 8 pages, 7 figures, 11th International Conference on Applications of Nuclear Techniques, Crete, Greece, June 12-18, 201
    corecore