2,291 research outputs found
Repulsive Casimir forces and the role of surface modes
The Casimir repulsion between a metal and a dielectric suspended in a liquid
has been thoroughly studied in recent experiments. In the present paper we
consider surface modes in three layered systems modeled by dielectric functions
guaranteeing repulsion. It is shown that surface modes play a decisive role in
this phenomenon at short separations. For a toy plasma model we find the
contribution of the surface modes at all distances.Comment: 13 pages, 3 figures, submitted to PR
Sample dependence of the Casimir force
We have analysed available optical data for Au in the mid-infrared range which is important for a precise prediction of the Casimir force. Significant variation of the data demonstrates genuine sample dependence of the dielectric function. We demonstrate that the Casimir force is largely determined by the material properties in the low frequency domain and argue that therefore the precise values of the Drude parameters are crucial for an accurate evaluation of the force. These parameters can be estimated by two different methods, either by fitting real and imaginary parts of the dielectric function at low frequencies, or via a Kramers–Kronig analysis based on the imaginary part of the dielectric function in the extended frequency range. Both methods lead to very similar results. We show that the variation of the Casimir force calculated with the use of different optical data can be as large as 5% and at any rate cannot be ignored. To have a reliable prediction of the force with a precision of 1%, one has to measure the optical properties of metallic films used for the force measurement
Dampening variability by using smoothing replenishment rules.
A major cause of supply chain deficiencies is the bullwhip effect which can be substantial even over a single echelon. This effect refers to the tendency of the variance of the replenishment orders to increase as it moves up a supply chain. Supply chain managers experience this variance amplification in both inventory levels and replenishment orders. As a result, companies face shortages or bloated inventories, run-away transportation and warehousing costs and major production adjustment costs. In this article we analyse a major cause of the bullwhip effect and suggest a remedy. We focus on a smoothing replenishment rule that is able to reduce the bullwhip effect across a single echelon. In general, dampening variability in orders may have a negative impact on customer service due to inventory variance increases. We therefore quantify the variance of the net stock and compute the required safety stock as a function of the smoothing required. Our analysis shows that bullwhip can be satisfactorily managed without unduly increasing stock levels to maintain target fill rates.Bullwhip effect; Companies; Cost; Costs; Impact; Inventory; Managers; Order; Replenishment rule; Rules; Safety stock; Supply chain; Supply chain management; Variability; Variance; Variance reduction;
Casimir energy and geometry : beyond the Proximity Force Approximation
We review the relation between Casimir effect and geometry, emphasizing
deviations from the commonly used Proximity Force Approximation (PFA). We use
to this aim the scattering formalism which is nowadays the best tool available
for accurate and reliable theory-experiment comparisons. We first recall the
main lines of this formalism when the mirrors can be considered to obey
specular reflection. We then discuss the more general case where non planar
mirrors give rise to non-specular reflection with wavevectors and field
polarisations mixed. The general formalism has already been fruitfully used for
evaluating the effect of roughness on the Casimir force as well as the lateral
Casimir force or Casimir torque appearing between corrugated surfaces. In this
short review, we focus our attention on the case of the lateral force which
should make possible in the future an experimental demonstration of the
nontrivial (i.e. beyond PFA) interplay of geometry and Casimir effect.Comment: corrected typos, added references, QFEXT'07 special issue in J. Phys.
Ultimate decoherence border for matter-wave interferometry
Stochastic backgrounds of gravitational waves are intrinsic fluctuations of
spacetime which lead to an unavoidable decoherence mechanism. This mechanism
manifests itself as a degradation of the contrast of quantum interferences. It
defines an ultimate decoherence border for matter-wave interferometry using
larger and larger molecules. We give a quantitative characterization of this
border in terms of figures involving the gravitational environment as well as
the sensitivity of the interferometer to gravitational waves. The known level
of gravitational noise determines the maximal size of the molecular probe for
which interferences may remain observable. We discuss the relevance of this
result in the context of ongoing progresses towards more and more sensitive
matter-wave interferometry.Comment: 4 page
Influence of slab thickness on the Casimir force
We calculate the Casimir force between slabs of finite thickness made of
intrinsic and doped silicon with different concentration of carriers and
compare the results to those obtained for gold slabs. We use the Drude and the
plasma models to describe the dielectric function for the carriers in doped Si.
We discuss the possibility of experimentally testing the appropriateness of
these models. We also investigate the influence of finite thickness on ,
which has recently been proposed for Casimir effect measurements testing the
metal-insulator transition.Comment: 10 pages, 10 figures, 2 tables, v2, typos correcte
Disorder in quantum vacuum: Casimir-induced localization of matter waves
Disordered geometrical boundaries such as rough surfaces induce important
modifications to the mode spectrum of the electromagnetic quantum vacuum. In
analogy to Anderson localization of waves induced by a random potential, here
we show that the Casimir-Polder interaction between a cold atomic sample and a
rough surface also produces localization phenomena. These effects, that
represent a macroscopic manifestation of disorder in quantum vacuum, should be
observable with Bose-Einstein condensates expanding in proximity of rough
surfaces
The Casimir Problem of Spherical Dielectrics: Numerical Evaluation for General Permittivities
The Casimir mutual free energy F for a system of two dielectric concentric
nonmagnetic spherical bodies is calculated, at arbitrary temperatures. The
present paper is a continuation of an earlier investigation [Phys. Rev. E {\bf
63}, 051101 (2001)], in which F was evaluated in full only for the case of
ideal metals (refractive index n=infinity). Here, analogous results are
presented for dielectrics, for some chosen values of n. Our basic calculational
method stems from quantum statistical mechanics. The Debye expansions for the
Riccati-Bessel functions when carried out to a high order are found to be very
useful in practice (thereby overflow/underflow problems are easily avoided),
and also to give accurate results even for the lowest values of l down to l=1.
Another virtue of the Debye expansions is that the limiting case of metals
becomes quite amenable to an analytical treatment in spherical geometry. We
first discuss the zero-frequency TE mode problem from a mathematical viewpoint
and then, as a physical input, invoke the actual dispersion relations. The
result of our analysis, based upon the adoption of the Drude dispersion
relation at low frequencies, is that the zero-frequency TE mode does not
contribute for a real metal. Accordingly, F turns out in this case to be only
one half of the conventional value at high temperatures. The applicability of
the Drude model in this context has however been questioned recently, and we do
not aim at a complete discussion of this issue here. Existing experiments are
low-temperature experiments, and are so far not accurate enough to distinguish
between the different predictions. We also calculate explicitly the
contribution from the zero-frequency mode for a dielectric. For a dielectric,
this zero-frequency problem is absent.Comment: 23 pages, LaTeX, 7 ps figures; expanded discussion, especially in
Sec. 5. To appear in Phys. Rev.
Adiabatic transfer of light in a double cavity and the optical Landau-Zener problem
We analyze the evolution of an electromagnetic field inside a double cavity
when the difference in length between the two cavities is changed, e.g. by
translating the common mirror. We find that this allows photons to be moved
deterministically from one cavity to the other. We are able to obtain the
conditions for adiabatic transfer by first mapping the Maxwell wave equation
for the electric field onto a Schroedinger-like wave equation, and then using
the Landau-Zener result for the transition probability at an avoided crossing.
Our analysis reveals that this mapping only rigorously holds when the two
cavities are weakly coupled (i.e. in the regime of a highly reflective common
mirror), and that, generally speaking, care is required when attempting a
hamiltonian description of cavity electrodynamics with time-dependent boundary
conditions.Comment: 24 pages, 18 figures. Version 2 includes a new section (Sec. VIII) on
the regimes of validity of the Schroedinger-like equations and also of the
adiabatic approximation, together with a new figure (Fig. 10). The discussion
section (Sec. XI) has also been enhance
- …