6 research outputs found
Analysis of the potential for coded excitation to improve the detection of tissue and blood motion in medical ultrasound.
Doppler ultrasound imaging modalities arguably represent one of the most complex task performed
(usually in real time) by ultrasound scanners. At the heart of these techniques lies the
ability to detect and estimate soft tissues or blood motion within the human body. As they
have become an invaluable tool in a wide range of clinical applications, these techniques have
fostered an intensive effort of research in the field of signal processing for more than thirty
years, with a push towards more accurate velocity or displacement estimation. Coded excitation
has recently received a growing interest in the medical ultrasound community. The use of
these techniques, originally developed in the radar field, makes it possible to increase the depth
of penetration in B-mode imaging, while complying with safety standards. These standards
impose strict limits on the peak acoustic intensity which can be transmitted into the body. Similar
solutions were proposed in the early developments of Doppler flow-meters to improve the
resolution / sensitivity trade-off from which typical pulsed Doppler systems suffer.
This work discusses the potential improvements in resolution, sensitivity and accuracy achievable
in the context of modern Doppler ultrasound imaging modalities (taken in its broadest
sense, that is, all the techniques involving the estimation of displacements, or velocities). A
theoretical framework is provided for discussing this potential improvements, along with simulations
for a more quantitative assessment. Colour Flow Imaging (CFI) modalities are taken
as the main reference technique for discussion, due to their historical importance, and their
relevance in many clinical applications. The potential achievable improvement in accuracy is
studied in the context of modern velocity estimation strategies, which can be broadly classified
into narrowband estimators (such as the “Kasai” estimator still widely used in CFI) and time
shift based wideband strategies (normalised crosscorrelation estimator used, for instance, in
applications like strain or strain rate estimation, elastography, etc.). Finally, simulations and
theoretical results are compared to experimental data obtained with a simple custom-designed
experimental set-up, using a single-element transducer
Non-destructive testing of composite plates by holographic vibrometry
We report on a wide-field optical monitoring method for revealing local
delaminations in sandwich-type composite plates at video-rate by holographic
vibrometry. Non-contact measurements of low frequency flexural waves is
performed with time-averaged heterodyne holography. It enables narrowband
imaging of local out-of-plane nanometric vibration amplitudes under sinusoidal
excitation, and reveals delamination defects, which cause local resonances of
flexural waves. The size of the defect can be estimated from the first
resonance frequency of the flexural wave and the mechanical parameters of the
observed layer of the composite plate
Analysis of the potential for coded excitation to improve the detection of tissue and blood motion in medical ultrasound
Doppler ultrasound imaging modalities arguably represent one of the most complex task performed (usually in real time) by ultrasound scanners. At the heart of these techniques lies the ability to detect and estimate soft tissues or blood motion within the human body. As they have become an invaluable tool in a wide range of clinical applications, these techniques have fostered an intensive effort of research in the field of signal processing for more than thirty years, with a push towards more accurate velocity or displacement estimation. Coded excitation has recently received a growing interest in the medical ultrasound community. The use of these techniques, originally developed in the radar field, makes it possible to increase the depth of penetration in B-mode imaging, while complying with safety standards. These standards impose strict limits on the peak acoustic intensity which can be transmitted into the body. Similar solutions were proposed in the early developments of Doppler flow-meters to improve the resolution / sensitivity trade-off from which typical pulsed Doppler systems suffer. This work discusses the potential improvements in resolution, sensitivity and accuracy achievable in the context of modern Doppler ultrasound imaging modalities (taken in its broadest sense, that is, all the techniques involving the estimation of displacements, or velocities). A theoretical framework is provided for discussing this potential improvements, along with simulations for a more quantitative assessment. Colour Flow Imaging (CFI) modalities are taken as the main reference technique for discussion, due to their historical importance, and their relevance in many clinical applications. The potential achievable improvement in accuracy is studied in the context of modern velocity estimation strategies, which can be broadly classified into narrowband estimators (such as the “Kasai” estimator still widely used in CFI) and time shift based wideband strategies (normalised crosscorrelation estimator used, for instance, in applications like strain or strain rate estimation, elastography, etc.). Finally, simulations and theoretical results are compared to experimental data obtained with a simple custom-designed experimental set-up, using a single-element transducer.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Indentation haute fréquence : vers le contrôle non-destructif des structures
La nanoindentation est couramment utilisée pour déterminer les propriétés mécaniques locales des matériaux. La matière est sollicitée de façon quasi statique en appliquant un indenteur sur la surface à analyser. À partir de la courbe représentant la charge appliquée par l’indenteur sur le matériau en fonction du déplacement de l’indenteur, les modèles classiques permettent de déterminer le module d’Young local en tout point de test [Oliver & Pharr, AIP Conference proceedings 7 (1992) 1564-1583; Doerner & Nix, J. Mater. Res. 1 (1986) 601-609; Loubet et al., Vickers indentation curves of elastoplastic materials, in American Society for Testing and Materials STP 889, Microindentation Techniques in Materials Science and Engineering, Blau & Lawn eds, 1986, pp. 72-89]. Cet essai est surtout utilisé sur de petites surfaces de matière (1000 cm2). Par extension de la méthode CSM (Continuous Stiffness Measurement) [Asif et al., Rev. Sci. Instrum. 70 (1999) 2408-2413], l’indenteur peut servir de générateur de vibrations. Pour cela l’indenteur est positionné sur un empilement de céramiques piézoélectriques et est appliqué sur la surface à analyser à une charge fixe de 1000 mN. L’indenteur est soumis à une oscillation à une fréquence de 5 kHz, alimenté à 10 V. Les ondes ultrasonores ainsi générées, dites «ondes de Lamb», induisent un déplacement nanométrique de la surface, détectable par un vibromètre laser. Il est alors possible de suivre la propagation du front d’onde et de détecter ses interactions avec d’éventuels défauts de la structure inspectée [Boro Djordjevic, Quantitative ultrasonic guided wave testing of composites, The 39th Annual Review of Progress, 2013]. Il en résulte une cartographie complète de la surface. L’indenteur peut aussi être utilisé comme récepteur de l’onde générée. Le positionnement d’indenteurs récepteurs en plusieurs endroits de la structure permet de mesurer le temps de vol de l’onde entre l’indenteur émetteur et l’indenteur récepteur. La connaissance précise de la distance entre les points d’émission et de réception de l’onde permet de mesurer les vitesses en fonction de l’anisotropie du matériau, ce qui, à terme, peut permettre de remonter à ses constantes d’élasticité